name: rag version: 1.0.0 description: "Document search, retrieval, and vector storage" author: "Enclava Team" category: "ai" # Module lifecycle enabled: true auto_start: true dependencies: [] optional_dependencies: - cache # Module capabilities provides: - "document_storage" - "semantic_search" - "vector_embeddings" - "document_processing" consumes: - "qdrant_connection" - "llm_embeddings" - "document_parsing" # API endpoints endpoints: - path: "/rag/collections" method: "GET" description: "List document collections" - path: "/rag/upload" method: "POST" description: "Upload and process documents" - path: "/rag/search" method: "POST" description: "Semantic search in documents" - path: "/rag/collections/{collection_id}/documents" method: "GET" description: "List documents in collection" # UI Configuration ui_config: icon: "search" color: "#8B5CF6" category: "AI & ML" forms: - name: "collection_config" title: "Collection Settings" fields: ["name", "description", "embedding_model"] - name: "search_config" title: "Search Configuration" fields: ["top_k", "similarity_threshold", "rerank_enabled"] # Permissions permissions: - name: "rag.create" description: "Create document collections" - name: "rag.upload" description: "Upload documents to collections" - name: "rag.search" description: "Search document collections" - name: "rag.manage" description: "Manage all collections (admin)" # Health checks health_checks: - name: "qdrant_connectivity" description: "Check Qdrant vector database connection" - name: "embeddings_service" description: "Check LLM embeddings service" - name: "document_processing" description: "Check document parsing capabilities"