mirror of
https://github.com/aljazceru/enclava.git
synced 2025-12-17 07:24:34 +01:00
adding ollama embeddings and expanding to metadata search
This commit is contained in:
@@ -55,8 +55,11 @@ async def debug_search(
|
||||
# Get configuration
|
||||
app_config = settings
|
||||
|
||||
# Initialize RAG module
|
||||
rag_module = RAGModule(app_config)
|
||||
# Initialize RAG module with BGE-M3 configuration
|
||||
rag_config = {
|
||||
"embedding_model": "BAAI/bge-m3"
|
||||
}
|
||||
rag_module = RAGModule(app_config, config=rag_config)
|
||||
|
||||
# Get available collections if none specified
|
||||
if not collection_name:
|
||||
|
||||
@@ -129,7 +129,7 @@ class Settings(BaseSettings):
|
||||
RAG_EMBEDDING_DELAY_PER_REQUEST: float = float(os.getenv("RAG_EMBEDDING_DELAY_PER_REQUEST", "0.5"))
|
||||
RAG_ALLOW_FALLBACK_EMBEDDINGS: bool = os.getenv("RAG_ALLOW_FALLBACK_EMBEDDINGS", "True").lower() == "true"
|
||||
RAG_WARN_ON_FALLBACK: bool = os.getenv("RAG_WARN_ON_FALLBACK", "True").lower() == "true"
|
||||
RAG_EMBEDDING_MODEL: str = os.getenv("RAG_EMBEDDING_MODEL", "BAAI/bge-small-en")
|
||||
RAG_EMBEDDING_MODEL: str = os.getenv("RAG_EMBEDDING_MODEL", "bge-m3")
|
||||
RAG_DOCUMENT_PROCESSING_TIMEOUT: int = int(os.getenv("RAG_DOCUMENT_PROCESSING_TIMEOUT", "300"))
|
||||
RAG_EMBEDDING_GENERATION_TIMEOUT: int = int(os.getenv("RAG_EMBEDDING_GENERATION_TIMEOUT", "120"))
|
||||
RAG_INDEXING_TIMEOUT: int = int(os.getenv("RAG_INDEXING_TIMEOUT", "120"))
|
||||
|
||||
@@ -846,9 +846,9 @@ class ChatbotModule(BaseModule):
|
||||
|
||||
logger.info(f"Looking up RAG collection with identifier: '{collection_identifier}'")
|
||||
|
||||
# First check if this might be a direct Qdrant collection name
|
||||
# (e.g., starts with "ext_", "rag_", or contains specific patterns)
|
||||
if collection_identifier.startswith(("ext_", "rag_", "test_")) or "_" in collection_identifier:
|
||||
# First check if this collection exists in Qdrant directly
|
||||
# Qdrant is the source of truth for collections
|
||||
if True: # Always check Qdrant first
|
||||
# Check if this collection exists in Qdrant directly
|
||||
actual_collection_name = collection_identifier
|
||||
# Remove "ext_" prefix if present
|
||||
@@ -866,6 +866,10 @@ class ChatbotModule(BaseModule):
|
||||
|
||||
if actual_collection_name in collection_names:
|
||||
logger.info(f"Found Qdrant collection directly: {actual_collection_name}")
|
||||
|
||||
# Auto-register the collection in the database if not found
|
||||
await self._auto_register_collection(actual_collection_name, db)
|
||||
|
||||
return actual_collection_name
|
||||
except Exception as e:
|
||||
logger.warning(f"Error checking Qdrant collections: {e}")
|
||||
@@ -898,13 +902,50 @@ class ChatbotModule(BaseModule):
|
||||
else:
|
||||
logger.warning(f"RAG collection '{collection_identifier}' not found in database (tried both ID and name)")
|
||||
return None
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error looking up RAG collection '{collection_identifier}': {e}")
|
||||
import traceback
|
||||
logger.error(f"Traceback: {traceback.format_exc()}")
|
||||
return None
|
||||
|
||||
async def _auto_register_collection(self, collection_name: str, db: Session) -> None:
|
||||
"""Automatically register a Qdrant collection in the database"""
|
||||
try:
|
||||
from app.models.rag_collection import RagCollection
|
||||
from sqlalchemy import select
|
||||
|
||||
# Check if already registered
|
||||
stmt = select(RagCollection).where(
|
||||
RagCollection.qdrant_collection_name == collection_name
|
||||
)
|
||||
result = db.execute(stmt)
|
||||
existing = result.scalar_one_or_none()
|
||||
|
||||
if existing:
|
||||
logger.info(f"Collection '{collection_name}' already registered in database")
|
||||
return
|
||||
|
||||
# Create a readable name from collection name
|
||||
display_name = collection_name.replace("-", " ").replace("_", " ").title()
|
||||
|
||||
# Auto-register the collection
|
||||
new_collection = RagCollection(
|
||||
name=display_name,
|
||||
qdrant_collection_name=collection_name,
|
||||
description=f"Auto-discovered collection from Qdrant: {collection_name}",
|
||||
is_active=True
|
||||
)
|
||||
|
||||
db.add(new_collection)
|
||||
db.commit()
|
||||
|
||||
logger.info(f"Auto-registered Qdrant collection '{collection_name}' in database")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to auto-register collection '{collection_name}': {e}")
|
||||
# Don't re-raise - this should not block collection usage
|
||||
|
||||
# Required abstract methods from BaseModule
|
||||
|
||||
async def cleanup(self):
|
||||
|
||||
@@ -148,8 +148,8 @@ class RAGModule(BaseModule):
|
||||
if config:
|
||||
self.config.update(config)
|
||||
|
||||
# Ensure embedding model configured (defaults to local BGE small)
|
||||
default_embedding_model = getattr(settings, 'RAG_EMBEDDING_MODEL', 'BAAI/bge-small-en')
|
||||
# Ensure embedding model configured (defaults to local BGE-M3)
|
||||
default_embedding_model = getattr(settings, 'RAG_EMBEDDING_MODEL', 'BAAI/bge-m3')
|
||||
self.config.setdefault("embedding_model", default_embedding_model)
|
||||
self.default_embedding_model = default_embedding_model
|
||||
|
||||
|
||||
@@ -19,8 +19,8 @@ class EmbeddingService:
|
||||
"""Service for generating text embeddings using a local transformer model"""
|
||||
|
||||
def __init__(self, model_name: Optional[str] = None):
|
||||
self.model_name = model_name or getattr(settings, "RAG_EMBEDDING_MODEL", "BAAI/bge-small-en")
|
||||
self.dimension = 384 # bge-small produces 384-d vectors
|
||||
self.model_name = model_name or getattr(settings, "RAG_EMBEDDING_MODEL", "BAAI/bge-m3")
|
||||
self.dimension = 1024 # bge-m3 produces 1024-d vectors
|
||||
self.initialized = False
|
||||
self.local_model = None
|
||||
self.backend = "uninitialized"
|
||||
@@ -127,7 +127,7 @@ class EmbeddingService:
|
||||
|
||||
def _generate_fallback_embedding(self, text: str) -> List[float]:
|
||||
"""Generate a single fallback embedding"""
|
||||
dimension = self.dimension or 384
|
||||
dimension = self.dimension or 1024
|
||||
# Use hash for reproducible random embeddings
|
||||
np.random.seed(hash(text) % 2**32)
|
||||
return np.random.random(dimension).tolist()
|
||||
|
||||
170
backend/app/services/ollama_embedding_service.py
Normal file
170
backend/app/services/ollama_embedding_service.py
Normal file
@@ -0,0 +1,170 @@
|
||||
"""
|
||||
Ollama Embedding Service
|
||||
Provides text embedding functionality using Ollama locally
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Any, Optional
|
||||
import numpy as np
|
||||
import aiohttp
|
||||
import asyncio
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OllamaEmbeddingService:
|
||||
"""Service for generating text embeddings using Ollama"""
|
||||
|
||||
def __init__(self, model_name: str = "bge-m3", base_url: str = "http://172.17.0.1:11434"):
|
||||
self.model_name = model_name
|
||||
self.base_url = base_url
|
||||
self.dimension = 1024 # bge-m3 dimension
|
||||
self.initialized = False
|
||||
self._session = None
|
||||
|
||||
async def initialize(self):
|
||||
"""Initialize embedding service with Ollama"""
|
||||
try:
|
||||
# Create HTTP session
|
||||
self._session = aiohttp.ClientSession(
|
||||
timeout=aiohttp.ClientTimeout(total=60)
|
||||
)
|
||||
|
||||
# Test Ollama is running and model is available
|
||||
async with self._session.get(f"{self.base_url}/api/tags") as resp:
|
||||
if resp.status != 200:
|
||||
logger.error(f"Ollama not responding at {self.base_url}")
|
||||
return False
|
||||
|
||||
data = await resp.json()
|
||||
models = [model['name'].split(':')[0] for model in data.get('models', [])]
|
||||
|
||||
if self.model_name not in models:
|
||||
logger.error(f"Model {self.model_name} not found in Ollama. Available: {models}")
|
||||
return False
|
||||
|
||||
# Test embedding generation
|
||||
test_embedding = await self.get_embedding("test")
|
||||
if not test_embedding or len(test_embedding) != self.dimension:
|
||||
logger.error(f"Failed to generate test embedding with {self.model_name}")
|
||||
return False
|
||||
|
||||
self.initialized = True
|
||||
logger.info(f"Ollama embedding service initialized with model: {self.model_name} (dimension: {self.dimension})")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize Ollama embedding service: {e}")
|
||||
return False
|
||||
|
||||
async def get_embedding(self, text: str) -> List[float]:
|
||||
"""Get embedding for a single text"""
|
||||
embeddings = await self.get_embeddings([text])
|
||||
return embeddings[0]
|
||||
|
||||
async def get_embeddings(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Get embeddings for multiple texts using Ollama"""
|
||||
if not self.initialized:
|
||||
# Try to initialize if not done
|
||||
if not await self.initialize():
|
||||
logger.error("Ollama embedding service not available")
|
||||
return self._generate_fallback_embeddings(texts)
|
||||
|
||||
try:
|
||||
embeddings = []
|
||||
|
||||
# Process each text individually (Ollama API typically processes one at a time)
|
||||
for text in texts:
|
||||
try:
|
||||
# Skip empty inputs
|
||||
if not text.strip():
|
||||
logger.debug("Empty input for embedding; using fallback vector")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
continue
|
||||
|
||||
# Call Ollama embedding API
|
||||
async with self._session.post(
|
||||
f"{self.base_url}/api/embeddings",
|
||||
json={
|
||||
"model": self.model_name,
|
||||
"prompt": text
|
||||
}
|
||||
) as resp:
|
||||
if resp.status != 200:
|
||||
logger.error(f"Ollama embedding request failed: {resp.status}")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
continue
|
||||
|
||||
result = await resp.json()
|
||||
|
||||
if 'embedding' in result:
|
||||
embedding = result['embedding']
|
||||
if len(embedding) == self.dimension:
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
logger.warning(f"Embedding dimension mismatch: expected {self.dimension}, got {len(embedding)}")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
else:
|
||||
logger.error(f"No embedding in Ollama response for text: {text[:50]}...")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting embedding from Ollama for text: {e}")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
|
||||
return embeddings
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating embeddings with Ollama: {e}")
|
||||
return self._generate_fallback_embeddings(texts)
|
||||
|
||||
def _generate_fallback_embeddings(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Generate fallback random embeddings when Ollama unavailable"""
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
return embeddings
|
||||
|
||||
def _generate_fallback_embedding(self, text: str) -> List[float]:
|
||||
"""Generate a single fallback embedding"""
|
||||
dimension = self.dimension # 1024 for bge-m3
|
||||
# Use hash for reproducible random embeddings
|
||||
np.random.seed(hash(text) % 2**32)
|
||||
return np.random.random(dimension).tolist()
|
||||
|
||||
async def similarity(self, text1: str, text2: str) -> float:
|
||||
"""Calculate cosine similarity between two texts"""
|
||||
embeddings = await self.get_embeddings([text1, text2])
|
||||
|
||||
# Calculate cosine similarity
|
||||
vec1 = np.array(embeddings[0])
|
||||
vec2 = np.array(embeddings[1])
|
||||
|
||||
# Normalize vectors
|
||||
vec1_norm = vec1 / np.linalg.norm(vec1)
|
||||
vec2_norm = vec2 / np.linalg.norm(vec2)
|
||||
|
||||
# Calculate cosine similarity
|
||||
similarity = np.dot(vec1_norm, vec2_norm)
|
||||
return float(similarity)
|
||||
|
||||
async def get_stats(self) -> Dict[str, Any]:
|
||||
"""Get embedding service statistics"""
|
||||
return {
|
||||
"model_name": self.model_name,
|
||||
"model_loaded": self.initialized,
|
||||
"dimension": self.dimension,
|
||||
"backend": "Ollama",
|
||||
"base_url": self.base_url,
|
||||
"initialized": self.initialized
|
||||
}
|
||||
|
||||
async def cleanup(self):
|
||||
"""Cleanup resources"""
|
||||
if self._session:
|
||||
await self._session.close()
|
||||
self.initialized = False
|
||||
|
||||
|
||||
# Global Ollama embedding service instance
|
||||
ollama_embedding_service = OllamaEmbeddingService()
|
||||
@@ -568,7 +568,7 @@ class RAGService:
|
||||
# Create collection with proper vector configuration
|
||||
from app.services.embedding_service import embedding_service
|
||||
|
||||
vector_dimension = getattr(embedding_service, 'dimension', 384) or 384
|
||||
vector_dimension = getattr(embedding_service, 'dimension', 1024) or 1024
|
||||
|
||||
client.create_collection(
|
||||
collection_name=collection_name,
|
||||
|
||||
@@ -805,9 +805,9 @@ class ChatbotModule(BaseModule):
|
||||
|
||||
logger.info(f"Looking up RAG collection with identifier: '{collection_identifier}'")
|
||||
|
||||
# First check if this might be a direct Qdrant collection name
|
||||
# (e.g., starts with "ext_", "rag_", or contains specific patterns)
|
||||
if collection_identifier.startswith(("ext_", "rag_", "test_")) or "_" in collection_identifier:
|
||||
# First check if this collection exists in Qdrant directly
|
||||
# Qdrant is the source of truth for collections
|
||||
if True: # Always check Qdrant first
|
||||
# Check if this collection exists in Qdrant directly
|
||||
actual_collection_name = collection_identifier
|
||||
# Remove "ext_" prefix if present
|
||||
@@ -825,6 +825,10 @@ class ChatbotModule(BaseModule):
|
||||
|
||||
if actual_collection_name in collection_names:
|
||||
logger.info(f"Found Qdrant collection directly: {actual_collection_name}")
|
||||
|
||||
# Auto-register the collection in the database if not found
|
||||
await self._auto_register_collection(actual_collection_name, db)
|
||||
|
||||
return actual_collection_name
|
||||
except Exception as e:
|
||||
logger.warning(f"Error checking Qdrant collections: {e}")
|
||||
@@ -857,13 +861,50 @@ class ChatbotModule(BaseModule):
|
||||
else:
|
||||
logger.warning(f"RAG collection '{collection_identifier}' not found in database (tried both ID and name)")
|
||||
return None
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error looking up RAG collection '{collection_identifier}': {e}")
|
||||
import traceback
|
||||
logger.error(f"Traceback: {traceback.format_exc()}")
|
||||
return None
|
||||
|
||||
async def _auto_register_collection(self, collection_name: str, db: Session) -> None:
|
||||
"""Automatically register a Qdrant collection in the database"""
|
||||
try:
|
||||
from app.models.rag_collection import RagCollection
|
||||
from sqlalchemy import select
|
||||
|
||||
# Check if already registered
|
||||
stmt = select(RagCollection).where(
|
||||
RagCollection.qdrant_collection_name == collection_name
|
||||
)
|
||||
result = db.execute(stmt)
|
||||
existing = result.scalar_one_or_none()
|
||||
|
||||
if existing:
|
||||
logger.info(f"Collection '{collection_name}' already registered in database")
|
||||
return
|
||||
|
||||
# Create a readable name from collection name
|
||||
display_name = collection_name.replace("-", " ").replace("_", " ").title()
|
||||
|
||||
# Auto-register the collection
|
||||
new_collection = RagCollection(
|
||||
name=display_name,
|
||||
qdrant_collection_name=collection_name,
|
||||
description=f"Auto-discovered collection from Qdrant: {collection_name}",
|
||||
is_active=True
|
||||
)
|
||||
|
||||
db.add(new_collection)
|
||||
db.commit()
|
||||
|
||||
logger.info(f"Auto-registered Qdrant collection '{collection_name}' in database")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to auto-register collection '{collection_name}': {e}")
|
||||
# Don't re-raise - this should not block collection usage
|
||||
|
||||
# Required abstract methods from BaseModule
|
||||
|
||||
async def cleanup(self):
|
||||
@@ -905,4 +946,4 @@ def create_module(rag_service: Optional[RAGServiceProtocol] = None) -> ChatbotMo
|
||||
return ChatbotModule(rag_service=rag_service)
|
||||
|
||||
# Create module instance (dependencies will be injected via factory)
|
||||
chatbot_module = ChatbotModule()
|
||||
chatbot_module = ChatbotModule()
|
||||
|
||||
@@ -148,8 +148,8 @@ class RAGModule(BaseModule):
|
||||
if config:
|
||||
self.config.update(config)
|
||||
|
||||
# Ensure embedding model configured (defaults to local BGE small)
|
||||
default_embedding_model = getattr(settings, 'RAG_EMBEDDING_MODEL', 'BAAI/bge-small-en')
|
||||
# Ensure embedding model configured (defaults to local BGE-M3)
|
||||
default_embedding_model = getattr(settings, 'RAG_EMBEDDING_MODEL', 'bge-m3')
|
||||
self.config.setdefault("embedding_model", default_embedding_model)
|
||||
self.default_embedding_model = default_embedding_model
|
||||
|
||||
@@ -431,20 +431,20 @@ class RAGModule(BaseModule):
|
||||
|
||||
async def _initialize_embedding_model(self):
|
||||
"""Initialize embedding model"""
|
||||
from app.services.embedding_service import embedding_service
|
||||
|
||||
from app.services.ollama_embedding_service import ollama_embedding_service
|
||||
|
||||
model_name = self.config.get("embedding_model", self.default_embedding_model)
|
||||
embedding_service.model_name = model_name
|
||||
|
||||
ollama_embedding_service.model_name = model_name
|
||||
|
||||
# Initialize the embedding service
|
||||
success = await embedding_service.initialize()
|
||||
|
||||
success = await ollama_embedding_service.initialize()
|
||||
|
||||
if success:
|
||||
self.embedding_service = embedding_service
|
||||
self.embedding_service = ollama_embedding_service
|
||||
logger.info(f"Successfully initialized embedding service with {model_name}")
|
||||
return {
|
||||
"model_name": model_name,
|
||||
"dimension": embedding_service.dimension or 384
|
||||
"dimension": ollama_embedding_service.dimension or 1024
|
||||
}
|
||||
else:
|
||||
# Fallback to mock implementation
|
||||
@@ -452,7 +452,7 @@ class RAGModule(BaseModule):
|
||||
self.embedding_service = None
|
||||
return {
|
||||
"model_name": model_name,
|
||||
"dimension": 384 # Default dimension matching local bge-small embeddings
|
||||
"dimension": 1024 # Default dimension matching BGE-M3 embeddings
|
||||
}
|
||||
|
||||
async def _initialize_content_processing(self):
|
||||
@@ -596,7 +596,7 @@ class RAGModule(BaseModule):
|
||||
# Create collection with the current embedding dimension
|
||||
vector_dimension = self.embedding_model.get(
|
||||
"dimension",
|
||||
getattr(self.embedding_service, "dimension", 384) or 384
|
||||
getattr(self.embedding_service, "dimension", 1024) or 1024
|
||||
)
|
||||
|
||||
self.qdrant_client.create_collection(
|
||||
@@ -664,7 +664,7 @@ class RAGModule(BaseModule):
|
||||
else:
|
||||
# Fallback to deterministic random embedding for consistency
|
||||
np.random.seed(hash(text) % 2**32)
|
||||
fallback_dim = self.embedding_model.get("dimension", getattr(self.embedding_service, "dimension", 384) or 384)
|
||||
fallback_dim = self.embedding_model.get("dimension", getattr(self.embedding_service, "dimension", 1024) or 1024)
|
||||
return np.random.random(fallback_dim).tolist()
|
||||
|
||||
async def _generate_embeddings(self, texts: List[str], is_document: bool = True) -> List[List[float]]:
|
||||
@@ -1617,11 +1617,11 @@ class RAGModule(BaseModule):
|
||||
# Special handling for collections with different vector dimensions
|
||||
SPECIAL_COLLECTIONS = {
|
||||
"bitbox02_faq_local": {
|
||||
"dimension": 384,
|
||||
"dimension": 1024,
|
||||
"model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
||||
},
|
||||
"bitbox_local_rag": {
|
||||
"dimension": 384,
|
||||
"dimension": 1024,
|
||||
"model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
import { useState, useEffect, Suspense } from "react";
|
||||
export const dynamic = 'force-dynamic'
|
||||
import { useSearchParams } from "next/navigation";
|
||||
import { Suspense } from "react";
|
||||
import { Card, CardContent, CardDescription, CardHeader, CardTitle } from "@/components/ui/card";
|
||||
import { Button } from "@/components/ui/button";
|
||||
import { Input } from "@/components/ui/input";
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"use client";
|
||||
|
||||
import { useState, useEffect } from 'react';
|
||||
import { useAuth } from '@/contexts/AuthContext';
|
||||
import { useAuth } from '@/components/providers/auth-provider';
|
||||
import { tokenManager } from '@/lib/token-manager';
|
||||
|
||||
interface SearchResult {
|
||||
|
||||
Reference in New Issue
Block a user