adding ollama embeddings and expanding to metadata search

This commit is contained in:
2025-10-23 06:58:34 +02:00
parent 5d964dfd54
commit 8b6d241921
11 changed files with 289 additions and 35 deletions

View File

@@ -0,0 +1,170 @@
"""
Ollama Embedding Service
Provides text embedding functionality using Ollama locally
"""
import logging
from typing import List, Dict, Any, Optional
import numpy as np
import aiohttp
import asyncio
logger = logging.getLogger(__name__)
class OllamaEmbeddingService:
"""Service for generating text embeddings using Ollama"""
def __init__(self, model_name: str = "bge-m3", base_url: str = "http://172.17.0.1:11434"):
self.model_name = model_name
self.base_url = base_url
self.dimension = 1024 # bge-m3 dimension
self.initialized = False
self._session = None
async def initialize(self):
"""Initialize embedding service with Ollama"""
try:
# Create HTTP session
self._session = aiohttp.ClientSession(
timeout=aiohttp.ClientTimeout(total=60)
)
# Test Ollama is running and model is available
async with self._session.get(f"{self.base_url}/api/tags") as resp:
if resp.status != 200:
logger.error(f"Ollama not responding at {self.base_url}")
return False
data = await resp.json()
models = [model['name'].split(':')[0] for model in data.get('models', [])]
if self.model_name not in models:
logger.error(f"Model {self.model_name} not found in Ollama. Available: {models}")
return False
# Test embedding generation
test_embedding = await self.get_embedding("test")
if not test_embedding or len(test_embedding) != self.dimension:
logger.error(f"Failed to generate test embedding with {self.model_name}")
return False
self.initialized = True
logger.info(f"Ollama embedding service initialized with model: {self.model_name} (dimension: {self.dimension})")
return True
except Exception as e:
logger.error(f"Failed to initialize Ollama embedding service: {e}")
return False
async def get_embedding(self, text: str) -> List[float]:
"""Get embedding for a single text"""
embeddings = await self.get_embeddings([text])
return embeddings[0]
async def get_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get embeddings for multiple texts using Ollama"""
if not self.initialized:
# Try to initialize if not done
if not await self.initialize():
logger.error("Ollama embedding service not available")
return self._generate_fallback_embeddings(texts)
try:
embeddings = []
# Process each text individually (Ollama API typically processes one at a time)
for text in texts:
try:
# Skip empty inputs
if not text.strip():
logger.debug("Empty input for embedding; using fallback vector")
embeddings.append(self._generate_fallback_embedding(text))
continue
# Call Ollama embedding API
async with self._session.post(
f"{self.base_url}/api/embeddings",
json={
"model": self.model_name,
"prompt": text
}
) as resp:
if resp.status != 200:
logger.error(f"Ollama embedding request failed: {resp.status}")
embeddings.append(self._generate_fallback_embedding(text))
continue
result = await resp.json()
if 'embedding' in result:
embedding = result['embedding']
if len(embedding) == self.dimension:
embeddings.append(embedding)
else:
logger.warning(f"Embedding dimension mismatch: expected {self.dimension}, got {len(embedding)}")
embeddings.append(self._generate_fallback_embedding(text))
else:
logger.error(f"No embedding in Ollama response for text: {text[:50]}...")
embeddings.append(self._generate_fallback_embedding(text))
except Exception as e:
logger.error(f"Error getting embedding from Ollama for text: {e}")
embeddings.append(self._generate_fallback_embedding(text))
return embeddings
except Exception as e:
logger.error(f"Error generating embeddings with Ollama: {e}")
return self._generate_fallback_embeddings(texts)
def _generate_fallback_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Generate fallback random embeddings when Ollama unavailable"""
embeddings = []
for text in texts:
embeddings.append(self._generate_fallback_embedding(text))
return embeddings
def _generate_fallback_embedding(self, text: str) -> List[float]:
"""Generate a single fallback embedding"""
dimension = self.dimension # 1024 for bge-m3
# Use hash for reproducible random embeddings
np.random.seed(hash(text) % 2**32)
return np.random.random(dimension).tolist()
async def similarity(self, text1: str, text2: str) -> float:
"""Calculate cosine similarity between two texts"""
embeddings = await self.get_embeddings([text1, text2])
# Calculate cosine similarity
vec1 = np.array(embeddings[0])
vec2 = np.array(embeddings[1])
# Normalize vectors
vec1_norm = vec1 / np.linalg.norm(vec1)
vec2_norm = vec2 / np.linalg.norm(vec2)
# Calculate cosine similarity
similarity = np.dot(vec1_norm, vec2_norm)
return float(similarity)
async def get_stats(self) -> Dict[str, Any]:
"""Get embedding service statistics"""
return {
"model_name": self.model_name,
"model_loaded": self.initialized,
"dimension": self.dimension,
"backend": "Ollama",
"base_url": self.base_url,
"initialized": self.initialized
}
async def cleanup(self):
"""Cleanup resources"""
if self._session:
await self._session.close()
self.initialized = False
# Global Ollama embedding service instance
ollama_embedding_service = OllamaEmbeddingService()