mirror of
https://github.com/aljazceru/enclava.git
synced 2025-12-17 23:44:24 +01:00
adding ollama embeddings and expanding to metadata search
This commit is contained in:
170
backend/app/services/ollama_embedding_service.py
Normal file
170
backend/app/services/ollama_embedding_service.py
Normal file
@@ -0,0 +1,170 @@
|
||||
"""
|
||||
Ollama Embedding Service
|
||||
Provides text embedding functionality using Ollama locally
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import List, Dict, Any, Optional
|
||||
import numpy as np
|
||||
import aiohttp
|
||||
import asyncio
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OllamaEmbeddingService:
|
||||
"""Service for generating text embeddings using Ollama"""
|
||||
|
||||
def __init__(self, model_name: str = "bge-m3", base_url: str = "http://172.17.0.1:11434"):
|
||||
self.model_name = model_name
|
||||
self.base_url = base_url
|
||||
self.dimension = 1024 # bge-m3 dimension
|
||||
self.initialized = False
|
||||
self._session = None
|
||||
|
||||
async def initialize(self):
|
||||
"""Initialize embedding service with Ollama"""
|
||||
try:
|
||||
# Create HTTP session
|
||||
self._session = aiohttp.ClientSession(
|
||||
timeout=aiohttp.ClientTimeout(total=60)
|
||||
)
|
||||
|
||||
# Test Ollama is running and model is available
|
||||
async with self._session.get(f"{self.base_url}/api/tags") as resp:
|
||||
if resp.status != 200:
|
||||
logger.error(f"Ollama not responding at {self.base_url}")
|
||||
return False
|
||||
|
||||
data = await resp.json()
|
||||
models = [model['name'].split(':')[0] for model in data.get('models', [])]
|
||||
|
||||
if self.model_name not in models:
|
||||
logger.error(f"Model {self.model_name} not found in Ollama. Available: {models}")
|
||||
return False
|
||||
|
||||
# Test embedding generation
|
||||
test_embedding = await self.get_embedding("test")
|
||||
if not test_embedding or len(test_embedding) != self.dimension:
|
||||
logger.error(f"Failed to generate test embedding with {self.model_name}")
|
||||
return False
|
||||
|
||||
self.initialized = True
|
||||
logger.info(f"Ollama embedding service initialized with model: {self.model_name} (dimension: {self.dimension})")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to initialize Ollama embedding service: {e}")
|
||||
return False
|
||||
|
||||
async def get_embedding(self, text: str) -> List[float]:
|
||||
"""Get embedding for a single text"""
|
||||
embeddings = await self.get_embeddings([text])
|
||||
return embeddings[0]
|
||||
|
||||
async def get_embeddings(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Get embeddings for multiple texts using Ollama"""
|
||||
if not self.initialized:
|
||||
# Try to initialize if not done
|
||||
if not await self.initialize():
|
||||
logger.error("Ollama embedding service not available")
|
||||
return self._generate_fallback_embeddings(texts)
|
||||
|
||||
try:
|
||||
embeddings = []
|
||||
|
||||
# Process each text individually (Ollama API typically processes one at a time)
|
||||
for text in texts:
|
||||
try:
|
||||
# Skip empty inputs
|
||||
if not text.strip():
|
||||
logger.debug("Empty input for embedding; using fallback vector")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
continue
|
||||
|
||||
# Call Ollama embedding API
|
||||
async with self._session.post(
|
||||
f"{self.base_url}/api/embeddings",
|
||||
json={
|
||||
"model": self.model_name,
|
||||
"prompt": text
|
||||
}
|
||||
) as resp:
|
||||
if resp.status != 200:
|
||||
logger.error(f"Ollama embedding request failed: {resp.status}")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
continue
|
||||
|
||||
result = await resp.json()
|
||||
|
||||
if 'embedding' in result:
|
||||
embedding = result['embedding']
|
||||
if len(embedding) == self.dimension:
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
logger.warning(f"Embedding dimension mismatch: expected {self.dimension}, got {len(embedding)}")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
else:
|
||||
logger.error(f"No embedding in Ollama response for text: {text[:50]}...")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting embedding from Ollama for text: {e}")
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
|
||||
return embeddings
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating embeddings with Ollama: {e}")
|
||||
return self._generate_fallback_embeddings(texts)
|
||||
|
||||
def _generate_fallback_embeddings(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Generate fallback random embeddings when Ollama unavailable"""
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
embeddings.append(self._generate_fallback_embedding(text))
|
||||
return embeddings
|
||||
|
||||
def _generate_fallback_embedding(self, text: str) -> List[float]:
|
||||
"""Generate a single fallback embedding"""
|
||||
dimension = self.dimension # 1024 for bge-m3
|
||||
# Use hash for reproducible random embeddings
|
||||
np.random.seed(hash(text) % 2**32)
|
||||
return np.random.random(dimension).tolist()
|
||||
|
||||
async def similarity(self, text1: str, text2: str) -> float:
|
||||
"""Calculate cosine similarity between two texts"""
|
||||
embeddings = await self.get_embeddings([text1, text2])
|
||||
|
||||
# Calculate cosine similarity
|
||||
vec1 = np.array(embeddings[0])
|
||||
vec2 = np.array(embeddings[1])
|
||||
|
||||
# Normalize vectors
|
||||
vec1_norm = vec1 / np.linalg.norm(vec1)
|
||||
vec2_norm = vec2 / np.linalg.norm(vec2)
|
||||
|
||||
# Calculate cosine similarity
|
||||
similarity = np.dot(vec1_norm, vec2_norm)
|
||||
return float(similarity)
|
||||
|
||||
async def get_stats(self) -> Dict[str, Any]:
|
||||
"""Get embedding service statistics"""
|
||||
return {
|
||||
"model_name": self.model_name,
|
||||
"model_loaded": self.initialized,
|
||||
"dimension": self.dimension,
|
||||
"backend": "Ollama",
|
||||
"base_url": self.base_url,
|
||||
"initialized": self.initialized
|
||||
}
|
||||
|
||||
async def cleanup(self):
|
||||
"""Cleanup resources"""
|
||||
if self._session:
|
||||
await self._session.close()
|
||||
self.initialized = False
|
||||
|
||||
|
||||
# Global Ollama embedding service instance
|
||||
ollama_embedding_service = OllamaEmbeddingService()
|
||||
Reference in New Issue
Block a user