mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-19 06:34:21 +01:00
178 lines
5.3 KiB
Python
178 lines
5.3 KiB
Python
import os
|
|
|
|
import pytest
|
|
|
|
from dev_gpt.options.generate.generator import Generator
|
|
|
|
|
|
# The cognitive difficulty level is determined by the number of requirements the microservice has.
|
|
|
|
def test_generation_level_0(tmpdir):
|
|
"""
|
|
Requirements:
|
|
coding challenge: ❌
|
|
pip packages: ❌
|
|
environment: ❌
|
|
GPT-3.5-turbo: ❌
|
|
APIs: ❌
|
|
Databases: ❌
|
|
"""
|
|
os.environ['VERBOSE'] = 'true'
|
|
generator = Generator(
|
|
"The microservice is very simple, it does not take anything as input and only outputs the word 'test'",
|
|
str(tmpdir),
|
|
'gpt-3.5-turbo'
|
|
)
|
|
assert generator.generate() == 0
|
|
|
|
|
|
|
|
|
|
def test_generation_level_1(tmpdir):
|
|
"""
|
|
Requirements:
|
|
coding challenge: ❌
|
|
pip packages: ❌
|
|
environment: ❌
|
|
GPT-3.5-turbo: ✅ (for summarizing the text)
|
|
APIs: ❌
|
|
Databases: ❌
|
|
"""
|
|
os.environ['VERBOSE'] = 'true'
|
|
generator = Generator(
|
|
'''Input is a tweet that might contain passive aggressive language. The output is the positive version of that tweet.
|
|
Example tweet:
|
|
\'When your coworker microwaves fish in the break room... AGAIN. 🐟🤢
|
|
But hey, at least SOMEONE's enjoying their lunch. #officelife\'''',
|
|
str(tmpdir),
|
|
'gpt-3.5-turbo'
|
|
)
|
|
assert generator.generate() == 0
|
|
|
|
|
|
def test_generation_level_2(tmpdir):
|
|
"""
|
|
Requirements:
|
|
coding challenge: ❌
|
|
pip packages: ✅ (pdf parser)
|
|
environment: ❌
|
|
GPT-3.5-turbo: ✅ (for summarizing the text)
|
|
APIs: ❌
|
|
Databases: ❌
|
|
"""
|
|
os.environ['VERBOSE'] = 'true'
|
|
generator = Generator(
|
|
"The input is a PDF like https://www.africau.edu/images/default/sample.pdf and the output the summarized text (50 words).",
|
|
str(tmpdir),
|
|
'gpt-3.5-turbo'
|
|
)
|
|
assert generator.generate() == 0
|
|
|
|
def test_generation_level_3(tmpdir):
|
|
"""
|
|
Requirements:
|
|
coding challenge: ✅ (calculate the average closing price)
|
|
pip packages: ❌
|
|
environment: ❌
|
|
GPT-3.5-turbo: ✅ (for processing the text)
|
|
APIs: ✅ (financial data API)
|
|
Databases: ❌
|
|
"""
|
|
os.environ['VERBOSE'] = 'true'
|
|
generator = Generator(
|
|
f'''The input is a stock symbol (e.g., AAPL for Apple Inc.).
|
|
1. Fetch stock data (open, high, low, close, volume) for the past 30 days using a financial data API Yahoo Finance.
|
|
2. Calculate the average closing price over the 30 days.
|
|
3. Generate a brief summary of the company's stock performance over the past 30 days, including the average closing price and the company name.
|
|
4. Return the summary as a string.
|
|
Example input: 'AAPL'
|
|
''',
|
|
str(tmpdir),
|
|
'gpt-3.5-turbo'
|
|
)
|
|
assert generator.generate() == 0
|
|
|
|
def test_generation_level_4(tmpdir):
|
|
"""
|
|
Requirements:
|
|
coding challenge: ❌
|
|
pip packages: ✅ (text to speech)
|
|
environment: ✅ (tts library)
|
|
GPT-3.5-turbo: ✅ (summarizing the text)
|
|
APIs: ✅ (whisper for speech to text)
|
|
Databases: ❌
|
|
"""
|
|
os.environ['VERBOSE'] = 'true'
|
|
generator = Generator(
|
|
f'''Given an audio file (1min wav) of speech,
|
|
1. convert it to text using the Whisper API.
|
|
Here is the documentation on how to use the API:
|
|
import requests
|
|
url = "https://transcribe.whisperapi.com"
|
|
headers = {{
|
|
'Authorization': 'Bearer {os.environ['WHISPER_API_KEY']}'
|
|
}}
|
|
data = {{
|
|
"url": "URL_OF_STORED_AUDIO_FILE"
|
|
}}
|
|
response = requests.post(url, headers=headers, data=data)
|
|
assert response.status_code == 200
|
|
print('This is the text from the audio file:', response.json()['text'])
|
|
2. Summarize the text (~50 words) while still maintaining the key facts.
|
|
3. Create an audio file of the summarized text using a tts library.
|
|
4. Return the the audio file as base64 encoded binary.
|
|
Example input file: https://www.signalogic.com/melp/EngSamples/Orig/ENG_M.wav
|
|
''',
|
|
str(tmpdir),
|
|
'gpt-4'
|
|
)
|
|
assert generator.generate() == 0
|
|
|
|
|
|
def test_generation_level_5(tmpdir):
|
|
"""
|
|
Requirements:
|
|
coding challenge: ✅ (putting text on the image)
|
|
pip packages: ✅ (Pillow for image processing)
|
|
environment: ✅ (image library)
|
|
GPT-3.5-turbo: ✅ (for writing the joke)
|
|
APIs: ✅ (scenex for image description)
|
|
Databases: ❌
|
|
"""
|
|
os.environ['VERBOSE'] = 'true'
|
|
generator = Generator(f'''
|
|
The input is an image.
|
|
Use the following api to get the description of the image:
|
|
Request:
|
|
curl "https://us-central1-causal-diffusion.cloudfunctions.net/describe" \\
|
|
-H "x-api-key: token {os.environ['SCENEX_API_KEY']}" \\
|
|
-H "content-type: application/json" \\
|
|
--data '{{"data":[
|
|
{{"image": "<image url here>", "features": []}}
|
|
]}}'
|
|
Result format:
|
|
{{
|
|
"result": [
|
|
{{
|
|
"text": "<image description>"
|
|
}}
|
|
]
|
|
}}
|
|
The description is then used to generate a joke.
|
|
The joke is the put on the image.
|
|
The output is the image with the joke on it.
|
|
Example input image: https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/PNG_transparency_demonstration_1.png/560px-PNG_transparency_demonstration_1.png
|
|
''',
|
|
str(tmpdir),
|
|
'gpt-3.5-turbo'
|
|
)
|
|
assert generator.generate() == 0
|
|
|
|
@pytest.fixture
|
|
def tmpdir():
|
|
return 'microservice'
|
|
|
|
|
|
# further ideas:
|
|
# Create a wrapper around google called Joogle. It modifies the page summary preview text of the search results to insert the word Jina as much as possible.
|