import json from dev_gpt.apis.gpt import ask_gpt from dev_gpt.options.generate.parser import identity_parser, optional_tripple_back_tick_parser from dev_gpt.options.generate.prompt_factory import context_to_string from dev_gpt.options.generate.tools.tools import get_available_tools def auto_refine_description(context): context['microservice_description'] = ask_gpt( better_description_prompt, identity_parser, context_string=context_to_string(context) ) context['request_schema'] = ask_gpt( generate_request_schema_prompt, optional_tripple_back_tick_parser, context_string=context_to_string(context) ) context['response_schema'] = ask_gpt( generate_output_schema_prompt, optional_tripple_back_tick_parser, context_string=context_to_string(context) ) context['microservice_description'] = ask_gpt( summarize_description_and_schemas_prompt, identity_parser, context_string=context_to_string(context) ) # details = extract_information(context['microservice_description'], ['database connection details', 'URL', 'secret']) # if details: # context['microservice_description'] += '\n\nAdditional information:' + json.dumps(details, indent=4) # del context['details'] better_description_prompt = f'''{{context_string}} Update the description of the Microservice to make it more precise without adding or removing information. Note: the output must be a list of tasks the Microservice has to perform. Note: you must uses the following tools if necessary: {get_available_tools()} Example for the description: "return an image representing the current weather for a given location." \ when the tools gpt_3_5_turbo and google_custom_search are available: 1. get the current weather information from the https://openweathermap.org/ API 2. generate a Google search query to find the image matching the weather information and the location by using gpt_3_5_turbo (a) 3. find the image by using the google_custom_search (b) 4. return the image as a base64 encoded string''' generate_request_schema_prompt = '''{context_string} Generate the lean request json schema of the Microservice.k Note: If you are not sure about the details, then come up with the minimal number of parameters possible (could be even no parameters). Note: If you can decide to receive files as URLs or as base64 encoded strings, then choose the base64 encoded strings.''' generate_output_schema_prompt = '''{context_string} Generate the lean response json schema for the Microservice. Note: If you are not sure about the details, then come up with the minimal number of parameters possible. Note: If you can decide to return files as URLs or as base64 encoded strings, then choose the base64 encoded strings.''' summarize_description_and_schemas_prompt = '''{context_string} Write an updated microservice description by incorporating information about the request and response parameters in a concise way without losing any information. Note: You must not mention any details about algorithms or the technical implementation. Note: You must not mention that there is a request and response JSON schema Note: You must not use any formatting like triple backticks. Note: If google_custom_search or gpt_3_5_turbo is mentioned in the description, then you must mention them in the updated description as well. Note: If an external API besides google_custom_search and gpt_3_5_turbo is mentioned in the description, then you must mention the API in the updated description as well.'''