mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 15:14:20 +01:00
feat: poc
This commit is contained in:
160
main.py
Normal file
160
main.py
Normal file
@@ -0,0 +1,160 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import openai
|
||||||
|
from docarray import DocumentArray, Document
|
||||||
|
from jcloud.flow import CloudFlow
|
||||||
|
from jina import Client
|
||||||
|
|
||||||
|
openai.api_key = os.environ['OPENAI_API_KEY']
|
||||||
|
|
||||||
|
executor_description = "Write an executor that takes an images as byte input (document.blob within a DocumentArray) saves it locally and detects ocr " \
|
||||||
|
"and returns the texts as output (as DocumentArray). "
|
||||||
|
|
||||||
|
test_description = 'The test downloads the image ' \
|
||||||
|
'https://double-rhyme.com/logo_en_white2.png ' \
|
||||||
|
' loads it as bytes, takes it as input to the executor and asserts that the output is "Double Rhyme".'
|
||||||
|
|
||||||
|
response = openai.ChatCompletion.create(
|
||||||
|
temperature=0,
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a principal engineer working at Jina - an open source company."
|
||||||
|
"Using the Jina framework, users can define executors."
|
||||||
|
"Here is an example of how an executor can be defined:"
|
||||||
|
'''
|
||||||
|
class MyExecutor(Executor):
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
@requests
|
||||||
|
def foo(self, docs: DocumentArray, **kwargs) => DocumentArray:
|
||||||
|
for d in docs:
|
||||||
|
d.text = 'hello world'"
|
||||||
|
return docs
|
||||||
|
'''
|
||||||
|
"these imports are needed:"
|
||||||
|
'''
|
||||||
|
from jina import Executor, requests, DocumentArray, Document, Deployment
|
||||||
|
'''
|
||||||
|
"An executor gets a DocumentArray as input and returns a DocumentArray as output."
|
||||||
|
"Here is an example of how a DocumentArray can be defined:"
|
||||||
|
'''
|
||||||
|
d1 = Document(text='hello')
|
||||||
|
d2 = Document(blob=b'\f1')
|
||||||
|
d3 = Document(tensor=numpy.array([1, 2, 3]), chunks=[Document(uri=/local/path/to/file)]
|
||||||
|
d4 = Document(
|
||||||
|
uri='https://docs.docarray.org',
|
||||||
|
tags={'foo': 'bar'},
|
||||||
|
)
|
||||||
|
|
||||||
|
docs = DocumentArray([
|
||||||
|
d1, d2, d3, d4
|
||||||
|
])
|
||||||
|
'''
|
||||||
|
"these imports are needed:"
|
||||||
|
'''
|
||||||
|
from jina import DocumentArray, Document
|
||||||
|
'''
|
||||||
|
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content":
|
||||||
|
executor_description
|
||||||
|
+ "The code you write is production ready. Start from top-level and then fully implement all methods."
|
||||||
|
"First, write the executor name. (wrap the code in the string $$$start_executor_name$$$ ... $$$end_executor_name$$$)"
|
||||||
|
"Then, write the executor code. (wrap the code in the string $$$start_executor$$$ ... $$$end_executor$$$)"
|
||||||
|
"In addition write the content of the requirements.txt file. Make sure to include pytest. (wrap the code in the string $$$start_requirements$$$ ... $$$end_requirements$$$)"
|
||||||
|
"Then write a small unit test for the executor. (wrap the code in the string $$$start_test_executor$$$ ... $$$end_test_executor$$$)"
|
||||||
|
# "the snipped should take the local file wolf.obj as input and save the output as png files. "
|
||||||
|
+ test_description
|
||||||
|
+ "Finally write the Dockerfile that defines the environment in which the executor runs. The dockerfile runs the test during the build process (wrap the code in the string $$$start_dockerfile$$$ ... $$$end_dockerfile$$$)"
|
||||||
|
},
|
||||||
|
|
||||||
|
]
|
||||||
|
)
|
||||||
|
plain_text = response['choices'][0]['message']['content']
|
||||||
|
print(plain_text)
|
||||||
|
|
||||||
|
|
||||||
|
def find_between(input_string, start, end):
|
||||||
|
try:
|
||||||
|
start_index = input_string.index(start) + len(start)
|
||||||
|
end_index = input_string.index(end, start_index)
|
||||||
|
return input_string[start_index:end_index]
|
||||||
|
except ValueError:
|
||||||
|
raise ValueError(f'Could not find {start} and {end} in {input_string}')
|
||||||
|
|
||||||
|
|
||||||
|
def clean_content(content):
|
||||||
|
return content.replace('```', '').strip()
|
||||||
|
|
||||||
|
|
||||||
|
for tag, file_ending in [['executor', 'py'], ['requirements', 'txt'], ['test_executor', 'py'], ['dockerfile', '']]:
|
||||||
|
content = find_between(plain_text, f'$$$start_{tag}$$$', f'$$$end_{tag}$$$')
|
||||||
|
clean = clean_content(content)
|
||||||
|
file_name = f'{tag}.{file_ending}' if file_ending else tag
|
||||||
|
folder = 'executor'
|
||||||
|
full_path = os.path.join(folder, file_name)
|
||||||
|
os.makedirs(folder, exist_ok=True)
|
||||||
|
with open(full_path, 'w') as f:
|
||||||
|
f.write(clean)
|
||||||
|
|
||||||
|
executor_name = find_between(plain_text, f'$$$start_executor_name$$$', f'$$$end_executor_name$$$').strip()
|
||||||
|
config_content = f'''
|
||||||
|
jtype: {executor_name}
|
||||||
|
py_modules:
|
||||||
|
- executor.py
|
||||||
|
metas:
|
||||||
|
name: {executor_name}
|
||||||
|
'''
|
||||||
|
with open('executor/config.yml', 'w') as f:
|
||||||
|
f.write(config_content)
|
||||||
|
|
||||||
|
cmd = 'jina hub push executor/.'
|
||||||
|
os.system(cmd)
|
||||||
|
|
||||||
|
flow = f'''
|
||||||
|
jtype: Flow
|
||||||
|
with:
|
||||||
|
monitoring: true
|
||||||
|
env:
|
||||||
|
JINA_LOG_LEVEL: DEBUG
|
||||||
|
jcloud:
|
||||||
|
version: '3.14.2.dev18'
|
||||||
|
labels:
|
||||||
|
team: now
|
||||||
|
gateway:
|
||||||
|
jcloud:
|
||||||
|
expose: true
|
||||||
|
executors:
|
||||||
|
- name: {executor_name.lower()}
|
||||||
|
uses: jinaai+docker://team-now-prod/{executor_name}
|
||||||
|
env:
|
||||||
|
JINA_LOG_LEVEL: DEBUG
|
||||||
|
jcloud:
|
||||||
|
expose: true
|
||||||
|
autoscale:
|
||||||
|
min: 4
|
||||||
|
max: 15
|
||||||
|
metric: concurrency
|
||||||
|
target: 1
|
||||||
|
resources:
|
||||||
|
instance: C4
|
||||||
|
capacity: spot
|
||||||
|
'''
|
||||||
|
full_flow_path = os.path.join('executor', 'flow.yml')
|
||||||
|
with open(full_flow_path, 'w') as f:
|
||||||
|
f.write(flow)
|
||||||
|
|
||||||
|
cloud_flow = CloudFlow(path=full_flow_path).__enter__()
|
||||||
|
host = cloud_flow.endpoints['gateway']
|
||||||
|
client = Client(host=host)
|
||||||
|
|
||||||
|
response = client.post('/index', inputs=DocumentArray([Document(uri='https://double-rhyme.com/logo_en_white2.png')]))
|
||||||
|
response[0].summary()
|
||||||
|
|
||||||
|
# "Write an executor using open3d that takes 3d models in obj format (within a DocumentArray) as input and returns 3 2d renderings for each 3d model from unique random angles as output (as DocumentArray). Each document of the output DocumentArray has 3 chunks. Each chunk is one of the 2d renderings as png. "
|
||||||
|
|
||||||
1
requirements.txt
Normal file
1
requirements.txt
Normal file
@@ -0,0 +1 @@
|
|||||||
|
jina[perf]==3.14.2.dev18
|
||||||
Reference in New Issue
Block a user