mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 23:24:20 +01:00
refactor: langchain
This commit is contained in:
@@ -5,3 +5,4 @@ psutil
|
||||
jina
|
||||
jcloud
|
||||
jina-hubble-sdk
|
||||
langchain
|
||||
124
src/apis/gpt.py
124
src/apis/gpt.py
@@ -1,15 +1,21 @@
|
||||
import os
|
||||
from time import sleep
|
||||
|
||||
from typing import List, Tuple, Optional
|
||||
from typing import List, Any
|
||||
|
||||
import openai
|
||||
from openai.error import RateLimitError, Timeout, APIConnectionError
|
||||
from langchain.callbacks import CallbackManager
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from openai.error import RateLimitError
|
||||
from langchain.schema import (
|
||||
AIMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
BaseMessage
|
||||
)
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
|
||||
from src.constants import PRICING_GPT4_PROMPT, PRICING_GPT4_GENERATION, PRICING_GPT3_5_TURBO_PROMPT, \
|
||||
PRICING_GPT3_5_TURBO_GENERATION, CHARS_PER_TOKEN
|
||||
from src.options.generate.prompt_system import system_base_definition, executor_example, docarray_example, client_example
|
||||
from src.utils.io import timeout_generator_wrapper, GenerationTimeoutError
|
||||
from src.options.generate.prompt_system import system_message_base, executor_example, docarray_example, client_example
|
||||
from src.utils.string_tools import print_colored
|
||||
|
||||
|
||||
@@ -18,19 +24,14 @@ class GPTSession:
|
||||
self.configure_openai_api_key()
|
||||
if model == 'gpt-4' and self.is_gpt4_available():
|
||||
self.supported_model = 'gpt-4'
|
||||
self.pricing_prompt = PRICING_GPT4_PROMPT
|
||||
self.pricing_generation = PRICING_GPT4_GENERATION
|
||||
else:
|
||||
if model == 'gpt-4':
|
||||
print_colored('GPT-4 is not available. Using GPT-3.5-turbo instead.', 'yellow')
|
||||
model = 'gpt-3.5-turbo'
|
||||
self.supported_model = model
|
||||
self.pricing_prompt = PRICING_GPT3_5_TURBO_PROMPT
|
||||
self.pricing_generation = PRICING_GPT3_5_TURBO_GENERATION
|
||||
self.chars_prompt_so_far = 0
|
||||
self.chars_generation_so_far = 0
|
||||
|
||||
def configure_openai_api_key(self):
|
||||
@staticmethod
|
||||
def configure_openai_api_key():
|
||||
if 'OPENAI_API_KEY' not in os.environ:
|
||||
raise Exception('''
|
||||
You need to set OPENAI_API_KEY in your environment.
|
||||
@@ -39,7 +40,8 @@ If you have updated it already, please restart your terminal.
|
||||
)
|
||||
openai.api_key = os.environ['OPENAI_API_KEY']
|
||||
|
||||
def is_gpt4_available(self):
|
||||
@staticmethod
|
||||
def is_gpt4_available():
|
||||
try:
|
||||
for i in range(5):
|
||||
try:
|
||||
@@ -58,87 +60,47 @@ If you have updated it already, please restart your terminal.
|
||||
except openai.error.InvalidRequestError:
|
||||
return False
|
||||
|
||||
def cost_callback(self, chars_prompt, chars_generation):
|
||||
self.chars_prompt_so_far += chars_prompt
|
||||
self.chars_generation_so_far += chars_generation
|
||||
print('\n')
|
||||
money_prompt = self.calculate_money_spent(self.chars_prompt_so_far, self.pricing_prompt)
|
||||
money_generation = self.calculate_money_spent(self.chars_generation_so_far, self.pricing_generation)
|
||||
print('Total money spent so far on openai.com:', f'${money_prompt + money_generation}')
|
||||
print('\n')
|
||||
|
||||
def get_conversation(self, system_definition_examples: List[str] = ['executor', 'docarray', 'client']):
|
||||
return _GPTConversation(self.supported_model, self.cost_callback, system_definition_examples)
|
||||
return _GPTConversation(self.supported_model, system_definition_examples)
|
||||
|
||||
def calculate_money_spent(self, num_chars, price):
|
||||
return round(num_chars / CHARS_PER_TOKEN * price / 1000, 3)
|
||||
|
||||
class AssistantStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler):
|
||||
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
||||
"""Run on new LLM token. Only available when streaming is enabled."""
|
||||
if os.environ['VERBOSE'].lower() == 'true':
|
||||
print_colored('', token, 'green', end='')
|
||||
|
||||
|
||||
class _GPTConversation:
|
||||
def __init__(self, model: str, cost_callback, system_definition_examples: List[str] = ['executor', 'docarray', 'client']):
|
||||
self.model = model
|
||||
self.cost_callback = cost_callback
|
||||
self.prompt_list: List[Optional[Tuple]] = [None]
|
||||
self.set_system_definition(system_definition_examples)
|
||||
def __init__(self, model: str, system_definition_examples: List[str] = ['executor', 'docarray', 'client']):
|
||||
self.chat = ChatOpenAI(
|
||||
model_name=model,
|
||||
streaming=True,
|
||||
callback_manager=CallbackManager([AssistantStreamingStdOutCallbackHandler()]),
|
||||
temperature=0
|
||||
)
|
||||
self.messages: List[BaseMessage] = []
|
||||
self.system_message = self._create_system_message(system_definition_examples)
|
||||
if os.environ['VERBOSE'].lower() == 'true':
|
||||
print_colored('system', self.prompt_list[0][1], 'magenta')
|
||||
print_colored('system', self.system_message.content, 'magenta')
|
||||
|
||||
def query(self, prompt: str):
|
||||
def chat(self, prompt: str):
|
||||
chat_message = HumanMessage(content=prompt)
|
||||
self.messages.append(chat_message)
|
||||
if os.environ['VERBOSE'].lower() == 'true':
|
||||
print_colored('user', prompt, 'blue')
|
||||
self.prompt_list.append(('user', prompt))
|
||||
response = self.get_response(self.prompt_list)
|
||||
self.prompt_list.append(('assistant', response))
|
||||
print_colored('assistant', '', 'green', end='')
|
||||
response = self.chat([self.system_message] + self.messages)
|
||||
self.messages.append(AIMessage(content=response))
|
||||
return response
|
||||
|
||||
def set_system_definition(self, system_definition_examples: List[str] = []):
|
||||
system_message = system_base_definition
|
||||
@staticmethod
|
||||
def _create_system_message(system_definition_examples: List[str] = []) -> SystemMessage:
|
||||
system_message = system_message_base
|
||||
if 'executor' in system_definition_examples:
|
||||
system_message += f'\n{executor_example}'
|
||||
if 'docarray' in system_definition_examples:
|
||||
system_message += f'\n{docarray_example}'
|
||||
if 'client' in system_definition_examples:
|
||||
system_message += f'\n{client_example}'
|
||||
self.prompt_list[0] = ('system', system_message)
|
||||
|
||||
def get_response_from_stream(self, response_generator):
|
||||
response_generator_with_timeout = timeout_generator_wrapper(response_generator, 10)
|
||||
complete_string = ''
|
||||
for chunk in response_generator_with_timeout:
|
||||
delta = chunk['choices'][0]['delta']
|
||||
if 'content' in delta:
|
||||
content = delta['content']
|
||||
print_colored('' if complete_string else 'assistant', content, 'green', end='')
|
||||
complete_string += content
|
||||
return complete_string
|
||||
|
||||
def get_response(self, prompt_list: List[Tuple[str, str]]):
|
||||
for i in range(10):
|
||||
try:
|
||||
response_generator = openai.ChatCompletion.create(
|
||||
temperature=0,
|
||||
max_tokens=None,
|
||||
model=self.model,
|
||||
stream=True,
|
||||
messages=[
|
||||
{
|
||||
"role": prompt[0],
|
||||
"content": prompt[1]
|
||||
}
|
||||
for prompt in prompt_list
|
||||
]
|
||||
)
|
||||
|
||||
complete_string = self.get_response_from_stream(response_generator)
|
||||
|
||||
except (RateLimitError, Timeout, ConnectionError, APIConnectionError, GenerationTimeoutError) as e:
|
||||
print('/n', e)
|
||||
print('retrying...')
|
||||
sleep(3)
|
||||
continue
|
||||
chars_prompt = sum(len(prompt[1]) for prompt in prompt_list)
|
||||
chars_generation = len(complete_string)
|
||||
self.cost_callback(chars_prompt, chars_generation)
|
||||
return complete_string
|
||||
raise Exception('Failed to get response')
|
||||
|
||||
return SystemMessage(content=system_message)
|
||||
|
||||
@@ -2,6 +2,7 @@ import functools
|
||||
import os
|
||||
|
||||
import click
|
||||
from langchain.callbacks import get_openai_callback
|
||||
|
||||
from src.apis.jina_cloud import jina_auth_login
|
||||
from src.options.configure.key_handling import set_api_key
|
||||
@@ -64,7 +65,11 @@ def generate(
|
||||
|
||||
from src.options.generate.generator import Generator
|
||||
generator = Generator(model=model)
|
||||
with get_openai_callback() as cb:
|
||||
generator.generate(description, test, path)
|
||||
print(f"Prompt/Completion/Total Tokens: {cb.prompt_tokens}/{cb.completion_tokens}/{cb.total_tokens}")
|
||||
print(f"Total Cost on OpenAI (USD): ${cb.total_cost}")
|
||||
|
||||
|
||||
@main.command()
|
||||
@path_param
|
||||
|
||||
@@ -23,12 +23,6 @@ FILE_AND_TAG_PAIRS = [
|
||||
|
||||
FLOW_URL_PLACEHOLDER = 'jcloud.jina.ai'
|
||||
|
||||
PRICING_GPT4_PROMPT = 0.03
|
||||
PRICING_GPT4_GENERATION = 0.06
|
||||
PRICING_GPT3_5_TURBO_PROMPT = 0.002
|
||||
PRICING_GPT3_5_TURBO_GENERATION = 0.002
|
||||
|
||||
CHARS_PER_TOKEN = 3.4
|
||||
|
||||
NUM_IMPLEMENTATION_STRATEGIES = 5
|
||||
MAX_DEBUGGING_ITERATIONS = 10
|
||||
|
||||
@@ -74,15 +74,15 @@ class Generator:
|
||||
+ executor_file_task(microservice_name, description, test, package)
|
||||
)
|
||||
conversation = self.gpt_session.get_conversation()
|
||||
microservice_content_raw = conversation.query(user_query)
|
||||
microservice_content_raw = conversation.chat(user_query)
|
||||
if is_chain_of_thought:
|
||||
microservice_content_raw = conversation.query(
|
||||
microservice_content_raw = conversation.chat(
|
||||
f"General rules: " + not_allowed_executor() + chain_of_thought_optimization('python',
|
||||
'microservice.py'))
|
||||
microservice_content = self.extract_content_from_result(microservice_content_raw, 'microservice.py',
|
||||
match_single_block=True)
|
||||
if microservice_content == '':
|
||||
microservice_content_raw = conversation.query('You must add the executor code.')
|
||||
microservice_content_raw = conversation.chat('You must add the executor code.')
|
||||
microservice_content = self.extract_content_from_result(
|
||||
microservice_content_raw, 'microservice.py', match_single_block=True
|
||||
)
|
||||
@@ -95,9 +95,9 @@ class Generator:
|
||||
+ test_executor_file_task(microservice_name, test)
|
||||
)
|
||||
conversation = self.gpt_session.get_conversation()
|
||||
test_microservice_content_raw = conversation.query(user_query)
|
||||
test_microservice_content_raw = conversation.chat(user_query)
|
||||
if is_chain_of_thought:
|
||||
test_microservice_content_raw = conversation.query(
|
||||
test_microservice_content_raw = conversation.chat(
|
||||
f"General rules: " + not_allowed_executor() +
|
||||
chain_of_thought_optimization('python', 'test_microservice.py')
|
||||
+ "Don't add any additional tests. "
|
||||
@@ -116,9 +116,9 @@ class Generator:
|
||||
+ requirements_file_task()
|
||||
)
|
||||
conversation = self.gpt_session.get_conversation()
|
||||
requirements_content_raw = conversation.query(user_query)
|
||||
requirements_content_raw = conversation.chat(user_query)
|
||||
if is_chain_of_thought:
|
||||
requirements_content_raw = conversation.query(
|
||||
requirements_content_raw = conversation.chat(
|
||||
chain_of_thought_optimization('', requirements_path) + "Keep the same version of jina ")
|
||||
|
||||
requirements_content = self.extract_content_from_result(requirements_content_raw, 'requirements.txt',
|
||||
@@ -134,9 +134,9 @@ class Generator:
|
||||
+ docker_file_task()
|
||||
)
|
||||
conversation = self.gpt_session.get_conversation()
|
||||
dockerfile_content_raw = conversation.query(user_query)
|
||||
dockerfile_content_raw = conversation.chat(user_query)
|
||||
if is_chain_of_thought:
|
||||
dockerfile_content_raw = conversation.query(
|
||||
dockerfile_content_raw = conversation.chat(
|
||||
f"General rules: " + not_allowed_executor() + chain_of_thought_optimization('dockerfile', 'Dockerfile'))
|
||||
dockerfile_content = self.extract_content_from_result(dockerfile_content_raw, 'Dockerfile',
|
||||
match_single_block=True)
|
||||
@@ -172,8 +172,8 @@ The playground (app.py) must not let the user configure the host on the ui.
|
||||
'''
|
||||
)
|
||||
conversation = self.gpt_session.get_conversation([])
|
||||
conversation.query(user_query)
|
||||
playground_content_raw = conversation.query(chain_of_thought_optimization('python', 'app.py', 'the playground'))
|
||||
conversation.chat(user_query)
|
||||
playground_content_raw = conversation.chat(chain_of_thought_optimization('python', 'app.py', 'the playground'))
|
||||
playground_content = self.extract_content_from_result(playground_content_raw, 'app.py', match_single_block=True)
|
||||
persist_file(playground_content, os.path.join(microservice_path, 'app.py'))
|
||||
|
||||
@@ -213,7 +213,7 @@ The playground (app.py) must not let the user configure the host on the ui.
|
||||
user_query = self.get_user_query_code_issue(description, error, file_name_to_content,
|
||||
test)
|
||||
conversation = self.gpt_session.get_conversation()
|
||||
returned_files_raw = conversation.query(user_query)
|
||||
returned_files_raw = conversation.chat(user_query)
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
updated_file = self.extract_content_from_result(returned_files_raw, file_name)
|
||||
if updated_file and (not is_dependency_issue or file_name in ['requirements.txt', 'Dockerfile']):
|
||||
@@ -280,7 +280,7 @@ complete file. Use the exact same syntax to wrap the code:
|
||||
|
||||
print_colored('', 'Is it a dependency issue?', 'blue')
|
||||
conversation = self.gpt_session.get_conversation([])
|
||||
answer = conversation.query(
|
||||
answer = conversation.chat(
|
||||
f'Your task is to assist in identifying the root cause of a Docker build error for a python application. '
|
||||
f'The error message is as follows::\n\n{error}\n\n'
|
||||
f'The docker file is as follows:\n\n{docker_file}\n\n'
|
||||
@@ -305,7 +305,7 @@ The output is a the raw string wrapped into ``` and starting with **name.txt** l
|
||||
PDFParserExecutor
|
||||
```
|
||||
'''
|
||||
name_raw = conversation.query(user_query)
|
||||
name_raw = conversation.chat(user_query)
|
||||
name = self.extract_content_from_result(name_raw, 'name.txt')
|
||||
return name
|
||||
|
||||
@@ -341,7 +341,7 @@ package5
|
||||
```
|
||||
'''
|
||||
conversation = self.gpt_session.get_conversation()
|
||||
packages_raw = conversation.query(user_query)
|
||||
packages_raw = conversation.chat(user_query)
|
||||
packages_csv_string = self.extract_content_from_result(packages_raw, 'packages.csv')
|
||||
packages = [package.split(',') for package in packages_csv_string.split('\n')]
|
||||
packages = packages[:NUM_IMPLEMENTATION_STRATEGIES]
|
||||
@@ -351,13 +351,17 @@ package5
|
||||
generated_name = self.generate_microservice_name(description)
|
||||
microservice_name = f'{generated_name}{random.randint(0, 10_000_000)}'
|
||||
packages_list = self.get_possible_packages(description)
|
||||
packages_list = [packages for packages in packages_list if len(set(packages).intersection(set(PROBLEMATIC_PACKAGES))) == 0]
|
||||
packages_list = [
|
||||
packages for packages in packages_list if len(set(packages).intersection(set(PROBLEMATIC_PACKAGES))) == 0
|
||||
]
|
||||
for num_approach, packages in enumerate(packages_list):
|
||||
try:
|
||||
self.generate_microservice(description, test, microservice_path, microservice_name, packages,
|
||||
num_approach)
|
||||
final_version_path = self.debug_microservice(microservice_path, microservice_name, num_approach,
|
||||
packages, description, test)
|
||||
self.generate_microservice(
|
||||
description, test, microservice_path, microservice_name, packages, num_approach
|
||||
)
|
||||
final_version_path = self.debug_microservice(
|
||||
microservice_path, microservice_name, num_approach, packages, description, test
|
||||
)
|
||||
self.generate_playground(microservice_name, final_version_path)
|
||||
except self.MaxDebugTimeReachedException:
|
||||
print('Could not debug the Microservice with the approach:', packages)
|
||||
|
||||
@@ -71,7 +71,7 @@ print(response[0].text)
|
||||
```'''
|
||||
|
||||
|
||||
system_base_definition = f'''
|
||||
system_message_base = f'''
|
||||
It is the year 2021.
|
||||
You are a principal engineer working at Jina - an open source company.
|
||||
You accurately satisfy all of the user's requirements.
|
||||
|
||||
@@ -31,28 +31,6 @@ def get_all_microservice_files_with_content(folder_path):
|
||||
return file_name_to_content
|
||||
|
||||
|
||||
class GenerationTimeoutError(Exception):
|
||||
pass
|
||||
|
||||
def timeout_generator_wrapper(generator, timeout):
|
||||
def generator_func():
|
||||
for item in generator:
|
||||
yield item
|
||||
|
||||
def wrapper() -> Generator:
|
||||
gen = generator_func()
|
||||
while True:
|
||||
try:
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
future = executor.submit(next, gen)
|
||||
yield future.result(timeout=timeout)
|
||||
except StopIteration:
|
||||
break
|
||||
except concurrent.futures.TimeoutError:
|
||||
raise GenerationTimeoutError(f"Generation took too long")
|
||||
|
||||
return wrapper()
|
||||
|
||||
@contextmanager
|
||||
def suppress_stdout():
|
||||
original_stdout = sys.stdout
|
||||
|
||||
Reference in New Issue
Block a user