mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 15:14:20 +01:00
feat: chain of thought
This commit is contained in:
90
main.py
90
main.py
@@ -1,3 +1,4 @@
|
||||
import importlib
|
||||
import os
|
||||
import re
|
||||
|
||||
@@ -8,7 +9,7 @@ from src.prompt_system import system_base_definition
|
||||
from src.prompt_tasks import general_guidelines, executor_file_task, requirements_file_task, \
|
||||
test_executor_file_task, docker_file_task, client_file_task, streamlit_file_task
|
||||
from src.utils.io import recreate_folder
|
||||
from src.utils.string import find_differences
|
||||
from src.utils.string_tools import find_differences
|
||||
|
||||
|
||||
def extract_content_from_result(plain_text, file_name):
|
||||
@@ -17,7 +18,7 @@ def extract_content_from_result(plain_text, file_name):
|
||||
if match:
|
||||
return match.group(1).strip()
|
||||
else:
|
||||
return None
|
||||
raise ValueError(f'Could not find {file_name} in result')
|
||||
|
||||
|
||||
def extract_and_write(plain_text, dest_folder):
|
||||
@@ -28,7 +29,7 @@ def extract_and_write(plain_text, dest_folder):
|
||||
f.write(clean)
|
||||
|
||||
|
||||
def write_config_yml(executor_name):
|
||||
def write_config_yml(executor_name, dest_folder):
|
||||
config_content = f'''
|
||||
jtype: {executor_name}
|
||||
py_modules:
|
||||
@@ -36,7 +37,7 @@ py_modules:
|
||||
metas:
|
||||
name: {executor_name}
|
||||
'''
|
||||
with open('executor/config.yml', 'w') as f:
|
||||
with open(os.path.join(dest_folder, 'config.yml'), 'w') as f:
|
||||
f.write(config_content)
|
||||
|
||||
|
||||
@@ -69,7 +70,9 @@ def build_prototype_implementation(executor_description, executor_name, input_do
|
||||
+ docker_file_task()
|
||||
+ client_file_task()
|
||||
+ streamlit_file_task()
|
||||
+ "First, write down some non-obvious thoughts about the challenges of the task and how you handle them. "
|
||||
+ "First, write down some non-obvious thoughts about the challenges of the task and give multiple approaches on how you handle them. "
|
||||
"For example, there are different libraries you could use. "
|
||||
"Discuss the pros and cons for all of these approaches and then decide for one of the approaches. "
|
||||
"Then write as I told you. "
|
||||
)
|
||||
plain_text = gpt.get_response(system_definition, user_query)
|
||||
@@ -81,14 +84,18 @@ def build_production_ready_implementation(all_executor_files_string):
|
||||
system_base_definition
|
||||
+ f"The user gives you the code of the executor and all other files needed ({', '.join([e[0] for e in FILE_AND_TAG_PAIRS])}) "
|
||||
f"The files may contain bugs. Fix all of them. "
|
||||
f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
||||
f"Some imports might be missing. Make sure to add them. Output all the files in the same format like given to you. "
|
||||
|
||||
)
|
||||
user_query = (
|
||||
"Fix all files, add all missing code and imports. Make it production ready. "
|
||||
'Make it production ready. '
|
||||
"Fix all files and add all missing code. "
|
||||
"Keep the same format as given to you. "
|
||||
"First write down some non-obvious thoughts about what parts could need an adjustment and why. "
|
||||
"Then write as I told you. "
|
||||
f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
||||
f"Some imports might be missing. Make sure to add them. "
|
||||
f"Some libraries might be missing. Make sure to install them in the requirements.txt and Dockerfile. "
|
||||
"First write down an extensive list of obvious and non-obvious thoughts about what parts could need an adjustment and why. "
|
||||
"Think about if all the changes are required and finally decide for the changes you want to make. "
|
||||
f"Output all the files even the ones that did not change. "
|
||||
"Here are the files: \n\n"
|
||||
+ all_executor_files_string
|
||||
)
|
||||
@@ -119,60 +126,61 @@ def main(
|
||||
):
|
||||
recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
recreate_folder(EXECUTOR_FOLDER_v2)
|
||||
recreate_folder('flow')
|
||||
|
||||
all_executor_files_string = build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
output_doc_field, output_modality, test_in, test_out)
|
||||
extract_and_write(all_executor_files_string, EXECUTOR_FOLDER_v1)
|
||||
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
file_name_to_content_v1 = get_all_executor_files_with_content(EXECUTOR_FOLDER_v1)
|
||||
|
||||
all_executor_files_string_no_instructions = files_to_string(file_name_to_content_v1)
|
||||
|
||||
all_executor_files_string_improved = build_production_ready_implementation(all_executor_files_string_no_instructions)
|
||||
|
||||
extract_and_write(all_executor_files_string_improved, EXECUTOR_FOLDER_v2)
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v2)
|
||||
|
||||
write_config_yml(executor_name)
|
||||
jina_cloud.push_executor(EXECUTOR_FOLDER_v2)
|
||||
|
||||
jina_cloud.push_executor()
|
||||
host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
||||
|
||||
host = jina_cloud.deploy_flow(executor_name, do_validation)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, CLIENT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, STREAMLIT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, STREAMLIT_FILE_NAME), host)
|
||||
|
||||
update_client_line_in_file(f'executor/{CLIENT_FILE_NAME}', host)
|
||||
update_client_line_in_file(f'executor/{STREAMLIT_FILE_NAME}', host)
|
||||
if do_validation:
|
||||
pass
|
||||
importlib.import_module("executor_v1.client")
|
||||
|
||||
return get_all_executor_files_with_content(EXECUTOR_FOLDER_v2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
######### Level 2 task #########
|
||||
main(
|
||||
executor_name='My3DTo2DExecutor',
|
||||
executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
||||
input_modality='3d',
|
||||
input_doc_field='blob',
|
||||
output_modality='image',
|
||||
output_doc_field='blob',
|
||||
test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
||||
test_out='the output should be exactly one image in png format',
|
||||
do_validation=False
|
||||
)
|
||||
|
||||
######### Level 1 task #########
|
||||
# ######### Level 2 task #########
|
||||
# main(
|
||||
# executor_name='MyCoolOcrExecutor',
|
||||
# executor_description="OCR detector",
|
||||
# input_modality='image',
|
||||
# input_doc_field='uri',
|
||||
# output_modality='text',
|
||||
# output_doc_field='text',
|
||||
# test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
||||
# test_out='> Hello, world!_',
|
||||
# executor_name='My3DTo2DExecutor',
|
||||
# executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
||||
# input_modality='3d',
|
||||
# input_doc_field='blob',
|
||||
# output_modality='image',
|
||||
# output_doc_field='blob',
|
||||
# test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
||||
# test_out='the output should be exactly one image in png format',
|
||||
# do_validation=False
|
||||
# )
|
||||
|
||||
######## Level 1 task #########
|
||||
main(
|
||||
executor_name='MyCoolOcrExecutor',
|
||||
executor_description="OCR detector",
|
||||
input_modality='image',
|
||||
input_doc_field='uri',
|
||||
output_modality='text',
|
||||
output_doc_field='text',
|
||||
test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
||||
test_out='> Hello, world!_',
|
||||
do_validation=False
|
||||
)
|
||||
|
||||
# main(
|
||||
# executor_name='MySentimentAnalyzer',
|
||||
# executor_description="Sentiment analysis executor",
|
||||
|
||||
@@ -29,9 +29,9 @@ class CreateResponse(BaseModel):
|
||||
message: Optional[str]
|
||||
|
||||
@app.post("/create", response_model=CreateResponse)
|
||||
async def create_endpoint(request: CreateRequest):
|
||||
def create_endpoint(request: CreateRequest):
|
||||
|
||||
result = await main(
|
||||
result = main(
|
||||
executor_name=request.executor_name,
|
||||
executor_description=request.executor_description,
|
||||
input_modality=request.input_modality,
|
||||
@@ -55,7 +55,7 @@ app.add_middleware(
|
||||
|
||||
# Add a custom exception handler for RequestValidationError
|
||||
@app.exception_handler(RequestValidationError)
|
||||
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
||||
def validation_exception_handler(request: Request, exc: RequestValidationError):
|
||||
return JSONResponse(
|
||||
status_code=422,
|
||||
content={"detail": exc.errors()},
|
||||
|
||||
11
src/gpt.py
11
src/gpt.py
@@ -4,7 +4,8 @@ from time import sleep
|
||||
import openai
|
||||
from openai.error import RateLimitError, Timeout
|
||||
|
||||
from src.utils.string import print_colored
|
||||
from src.utils.io import timeout_generator_wrapper
|
||||
from src.utils.string_tools import print_colored
|
||||
|
||||
openai.api_key = os.environ['OPENAI_API_KEY']
|
||||
|
||||
@@ -13,7 +14,7 @@ def get_response(system_definition, user_query):
|
||||
print_colored('user_query', user_query, 'blue')
|
||||
for i in range(10):
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
response_generator = openai.ChatCompletion.create(
|
||||
temperature=0,
|
||||
max_tokens=5_000,
|
||||
model="gpt-4",
|
||||
@@ -32,15 +33,17 @@ def get_response(system_definition, user_query):
|
||||
|
||||
]
|
||||
)
|
||||
response_generator_with_timeout = timeout_generator_wrapper(response_generator, 5)
|
||||
|
||||
complete_string = ''
|
||||
for chunk in response:
|
||||
for chunk in response_generator_with_timeout:
|
||||
delta = chunk['choices'][0]['delta']
|
||||
if 'content' in delta:
|
||||
content = delta['content']
|
||||
print_colored('' if complete_string else 'Agent response:', content, 'green', end='')
|
||||
complete_string += content
|
||||
return complete_string
|
||||
except (RateLimitError, Timeout) as e:
|
||||
except (RateLimitError, Timeout, ConnectionError) as e:
|
||||
print(e)
|
||||
print('retrying')
|
||||
sleep(3)
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import asyncio
|
||||
import os
|
||||
from multiprocessing.connection import Client
|
||||
|
||||
@@ -9,8 +8,8 @@ from jina import Flow
|
||||
from src.constants import FLOW_URL_PLACEHOLDER
|
||||
|
||||
|
||||
def push_executor():
|
||||
cmd = 'jina hub push executor/. --verbose'
|
||||
def push_executor(dir_path):
|
||||
cmd = f'jina hub push {dir_path}/. --verbose'
|
||||
os.system(cmd)
|
||||
|
||||
def get_user_name():
|
||||
@@ -25,7 +24,7 @@ def deploy_on_jcloud(flow_yaml):
|
||||
|
||||
|
||||
|
||||
def deploy_flow(executor_name, do_validation):
|
||||
def deploy_flow(executor_name, do_validation, dest_folder):
|
||||
flow = f'''
|
||||
jtype: Flow
|
||||
with:
|
||||
@@ -47,7 +46,8 @@ executors:
|
||||
instance: C4
|
||||
capacity: spot
|
||||
'''
|
||||
full_flow_path = os.path.join('executor', 'flow.yml')
|
||||
full_flow_path = os.path.join(dest_folder,
|
||||
'flow.yml')
|
||||
with open(full_flow_path, 'w') as f:
|
||||
f.write(flow)
|
||||
|
||||
|
||||
@@ -6,14 +6,16 @@ executor_example = "Here is an example of how an executor can be defined. It alw
|
||||
# this executor takes ... as input and returns ... as output
|
||||
# it processes each document in the following way: ...
|
||||
from jina import Executor, requests, DocumentArray, Document
|
||||
class MyExecutor(Executor):
|
||||
class MyInfoExecutor(Executor):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
@requests
|
||||
def foo(self, docs: DocumentArray, **kwargs) => DocumentArray:
|
||||
for d in docs:
|
||||
d.text = 'hello world'"
|
||||
d.load_uri_to_blob()
|
||||
d.tags['my_info'] = {'byte_length': len(d.blob)}
|
||||
d.blob = None
|
||||
return docs
|
||||
'''
|
||||
"An executor gets a DocumentArray as input and returns a DocumentArray as output. "
|
||||
|
||||
@@ -73,7 +73,7 @@ def docker_file_task():
|
||||
"It is important to make sure that all libs are installed that are required by the python packages. "
|
||||
"Usually libraries are installed with apt-get. "
|
||||
"Add the config.yml file to the Dockerfile. "
|
||||
"The base image of the Dockerfile is FROM jinaai/jina:3.14.2-dev18-py310-standard. "
|
||||
"The base image of the Dockerfile is FROM jinaai/jina:3.14.1-py39-standard. "
|
||||
'The entrypoint is ENTRYPOINT ["jina", "executor", "--uses", "config.yml"] '
|
||||
"The Dockerfile runs the test during the build process. ",
|
||||
DOCKER_FILE_TAG,
|
||||
|
||||
@@ -1,8 +1,43 @@
|
||||
import os
|
||||
import shutil
|
||||
|
||||
import concurrent.futures
|
||||
import concurrent.futures
|
||||
from typing import Generator
|
||||
|
||||
def recreate_folder(folder_path):
|
||||
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
||||
shutil.rmtree(folder_path)
|
||||
os.makedirs(folder_path)
|
||||
|
||||
|
||||
class GenerationTimeoutError(Exception):
|
||||
pass
|
||||
|
||||
def timeout_generator_wrapper(generator, timeout):
|
||||
def generator_func():
|
||||
for item in generator:
|
||||
yield item
|
||||
|
||||
def wrapper() -> Generator:
|
||||
gen = generator_func()
|
||||
while True:
|
||||
try:
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
future = executor.submit(next, gen)
|
||||
yield future.result(timeout=timeout)
|
||||
except StopIteration:
|
||||
break
|
||||
except concurrent.futures.TimeoutError:
|
||||
raise GenerationTimeoutError(f"Generation took longer than {timeout} seconds")
|
||||
|
||||
return wrapper()
|
||||
|
||||
# def my_generator():
|
||||
# for i in range(10):
|
||||
# sleep(3)
|
||||
# yield 1
|
||||
#
|
||||
#
|
||||
# my_generator_with_timeout = timeout_generator_wrapper(my_generator, 2.9)
|
||||
# for item in my_generator_with_timeout():
|
||||
# print(item)
|
||||
Reference in New Issue
Block a user