mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 15:14:20 +01:00
feat: chain of thought
This commit is contained in:
90
main.py
90
main.py
@@ -1,3 +1,4 @@
|
||||
import importlib
|
||||
import os
|
||||
import re
|
||||
|
||||
@@ -8,7 +9,7 @@ from src.prompt_system import system_base_definition
|
||||
from src.prompt_tasks import general_guidelines, executor_file_task, requirements_file_task, \
|
||||
test_executor_file_task, docker_file_task, client_file_task, streamlit_file_task
|
||||
from src.utils.io import recreate_folder
|
||||
from src.utils.string import find_differences
|
||||
from src.utils.string_tools import find_differences
|
||||
|
||||
|
||||
def extract_content_from_result(plain_text, file_name):
|
||||
@@ -17,7 +18,7 @@ def extract_content_from_result(plain_text, file_name):
|
||||
if match:
|
||||
return match.group(1).strip()
|
||||
else:
|
||||
return None
|
||||
raise ValueError(f'Could not find {file_name} in result')
|
||||
|
||||
|
||||
def extract_and_write(plain_text, dest_folder):
|
||||
@@ -28,7 +29,7 @@ def extract_and_write(plain_text, dest_folder):
|
||||
f.write(clean)
|
||||
|
||||
|
||||
def write_config_yml(executor_name):
|
||||
def write_config_yml(executor_name, dest_folder):
|
||||
config_content = f'''
|
||||
jtype: {executor_name}
|
||||
py_modules:
|
||||
@@ -36,7 +37,7 @@ py_modules:
|
||||
metas:
|
||||
name: {executor_name}
|
||||
'''
|
||||
with open('executor/config.yml', 'w') as f:
|
||||
with open(os.path.join(dest_folder, 'config.yml'), 'w') as f:
|
||||
f.write(config_content)
|
||||
|
||||
|
||||
@@ -69,7 +70,9 @@ def build_prototype_implementation(executor_description, executor_name, input_do
|
||||
+ docker_file_task()
|
||||
+ client_file_task()
|
||||
+ streamlit_file_task()
|
||||
+ "First, write down some non-obvious thoughts about the challenges of the task and how you handle them. "
|
||||
+ "First, write down some non-obvious thoughts about the challenges of the task and give multiple approaches on how you handle them. "
|
||||
"For example, there are different libraries you could use. "
|
||||
"Discuss the pros and cons for all of these approaches and then decide for one of the approaches. "
|
||||
"Then write as I told you. "
|
||||
)
|
||||
plain_text = gpt.get_response(system_definition, user_query)
|
||||
@@ -81,14 +84,18 @@ def build_production_ready_implementation(all_executor_files_string):
|
||||
system_base_definition
|
||||
+ f"The user gives you the code of the executor and all other files needed ({', '.join([e[0] for e in FILE_AND_TAG_PAIRS])}) "
|
||||
f"The files may contain bugs. Fix all of them. "
|
||||
f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
||||
f"Some imports might be missing. Make sure to add them. Output all the files in the same format like given to you. "
|
||||
|
||||
)
|
||||
user_query = (
|
||||
"Fix all files, add all missing code and imports. Make it production ready. "
|
||||
'Make it production ready. '
|
||||
"Fix all files and add all missing code. "
|
||||
"Keep the same format as given to you. "
|
||||
"First write down some non-obvious thoughts about what parts could need an adjustment and why. "
|
||||
"Then write as I told you. "
|
||||
f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
||||
f"Some imports might be missing. Make sure to add them. "
|
||||
f"Some libraries might be missing. Make sure to install them in the requirements.txt and Dockerfile. "
|
||||
"First write down an extensive list of obvious and non-obvious thoughts about what parts could need an adjustment and why. "
|
||||
"Think about if all the changes are required and finally decide for the changes you want to make. "
|
||||
f"Output all the files even the ones that did not change. "
|
||||
"Here are the files: \n\n"
|
||||
+ all_executor_files_string
|
||||
)
|
||||
@@ -119,60 +126,61 @@ def main(
|
||||
):
|
||||
recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
recreate_folder(EXECUTOR_FOLDER_v2)
|
||||
recreate_folder('flow')
|
||||
|
||||
all_executor_files_string = build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
output_doc_field, output_modality, test_in, test_out)
|
||||
extract_and_write(all_executor_files_string, EXECUTOR_FOLDER_v1)
|
||||
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
file_name_to_content_v1 = get_all_executor_files_with_content(EXECUTOR_FOLDER_v1)
|
||||
|
||||
all_executor_files_string_no_instructions = files_to_string(file_name_to_content_v1)
|
||||
|
||||
all_executor_files_string_improved = build_production_ready_implementation(all_executor_files_string_no_instructions)
|
||||
|
||||
extract_and_write(all_executor_files_string_improved, EXECUTOR_FOLDER_v2)
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v2)
|
||||
|
||||
write_config_yml(executor_name)
|
||||
jina_cloud.push_executor(EXECUTOR_FOLDER_v2)
|
||||
|
||||
jina_cloud.push_executor()
|
||||
host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
||||
|
||||
host = jina_cloud.deploy_flow(executor_name, do_validation)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, CLIENT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, STREAMLIT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME), host)
|
||||
update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, STREAMLIT_FILE_NAME), host)
|
||||
|
||||
update_client_line_in_file(f'executor/{CLIENT_FILE_NAME}', host)
|
||||
update_client_line_in_file(f'executor/{STREAMLIT_FILE_NAME}', host)
|
||||
if do_validation:
|
||||
pass
|
||||
importlib.import_module("executor_v1.client")
|
||||
|
||||
return get_all_executor_files_with_content(EXECUTOR_FOLDER_v2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
######### Level 2 task #########
|
||||
main(
|
||||
executor_name='My3DTo2DExecutor',
|
||||
executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
||||
input_modality='3d',
|
||||
input_doc_field='blob',
|
||||
output_modality='image',
|
||||
output_doc_field='blob',
|
||||
test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
||||
test_out='the output should be exactly one image in png format',
|
||||
do_validation=False
|
||||
)
|
||||
|
||||
######### Level 1 task #########
|
||||
# ######### Level 2 task #########
|
||||
# main(
|
||||
# executor_name='MyCoolOcrExecutor',
|
||||
# executor_description="OCR detector",
|
||||
# input_modality='image',
|
||||
# input_doc_field='uri',
|
||||
# output_modality='text',
|
||||
# output_doc_field='text',
|
||||
# test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
||||
# test_out='> Hello, world!_',
|
||||
# executor_name='My3DTo2DExecutor',
|
||||
# executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
||||
# input_modality='3d',
|
||||
# input_doc_field='blob',
|
||||
# output_modality='image',
|
||||
# output_doc_field='blob',
|
||||
# test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
||||
# test_out='the output should be exactly one image in png format',
|
||||
# do_validation=False
|
||||
# )
|
||||
|
||||
######## Level 1 task #########
|
||||
main(
|
||||
executor_name='MyCoolOcrExecutor',
|
||||
executor_description="OCR detector",
|
||||
input_modality='image',
|
||||
input_doc_field='uri',
|
||||
output_modality='text',
|
||||
output_doc_field='text',
|
||||
test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
||||
test_out='> Hello, world!_',
|
||||
do_validation=False
|
||||
)
|
||||
|
||||
# main(
|
||||
# executor_name='MySentimentAnalyzer',
|
||||
# executor_description="Sentiment analysis executor",
|
||||
|
||||
Reference in New Issue
Block a user