mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-20 07:04:20 +01:00
fix: prompts
This commit is contained in:
@@ -1,2 +1,6 @@
|
|||||||
# vision
|
# vision
|
||||||
create, deploy and update your microservice infrastructure
|
create, deploy and update your microservice infrastructure
|
||||||
|
|
||||||
|
# frontend description
|
||||||
|
The microchain-frontend is used to define the graph of microservice, their interfaces and their functionality.
|
||||||
|
Based on this definition, the backend will be generated automatically.
|
||||||
|
|||||||
28
main.py
28
main.py
@@ -7,7 +7,7 @@ from jina import Client
|
|||||||
|
|
||||||
openai.api_key = os.environ['OPENAI_API_KEY']
|
openai.api_key = os.environ['OPENAI_API_KEY']
|
||||||
|
|
||||||
executor_description = "Write an executor that takes an images as byte input (document.blob within a DocumentArray) saves it locally and detects ocr " \
|
executor_description = "Write an executor that takes image bytes as input (document.blob within a DocumentArray) and use BytesIO to convert it to PIL and detects ocr " \
|
||||||
"and returns the texts as output (as DocumentArray). "
|
"and returns the texts as output (as DocumentArray). "
|
||||||
|
|
||||||
test_description = 'The test downloads the image ' \
|
test_description = 'The test downloads the image ' \
|
||||||
@@ -42,7 +42,7 @@ response = openai.ChatCompletion.create(
|
|||||||
"Here is an example of how a DocumentArray can be defined:"
|
"Here is an example of how a DocumentArray can be defined:"
|
||||||
'''
|
'''
|
||||||
d1 = Document(text='hello')
|
d1 = Document(text='hello')
|
||||||
d2 = Document(blob=b'\f1')
|
d2 = Document(blob=b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x03L\x00\x00\x01\x18\x08\x06\x00\x00\x00o...')
|
||||||
d3 = Document(tensor=numpy.array([1, 2, 3]), chunks=[Document(uri=/local/path/to/file)]
|
d3 = Document(tensor=numpy.array([1, 2, 3]), chunks=[Document(uri=/local/path/to/file)]
|
||||||
d4 = Document(
|
d4 = Document(
|
||||||
uri='https://docs.docarray.org',
|
uri='https://docs.docarray.org',
|
||||||
@@ -63,14 +63,17 @@ response = openai.ChatCompletion.create(
|
|||||||
"role": "user",
|
"role": "user",
|
||||||
"content":
|
"content":
|
||||||
executor_description
|
executor_description
|
||||||
+ "The code you write is production ready. Start from top-level and then fully implement all methods."
|
+ "The code you write is production ready. Every file starts with a 5 sentence comment of what the code is doing before the first import. Start from top-level and then fully implement all methods."
|
||||||
"First, write the executor name. (wrap the code in the string $$$start_executor_name$$$ ... $$$end_executor_name$$$)"
|
"First, write the executor name. (wrap the code in the string $$$start_executor_name$$$ ... $$$end_executor_name$$$)"
|
||||||
"Then, write the executor code. (wrap the code in the string $$$start_executor$$$ ... $$$end_executor$$$)"
|
"Then, write the executor code. (wrap the code in the string $$$start_executor$$$ ... $$$end_executor$$$)"
|
||||||
"In addition write the content of the requirements.txt file. Make sure to include pytest. (wrap the code in the string $$$start_requirements$$$ ... $$$end_requirements$$$)"
|
"In addition write the content of the requirements.txt file. Make sure to include pytest. (wrap the code in the string $$$start_requirements$$$ ... $$$end_requirements$$$)"
|
||||||
"Then write a small unit test for the executor. (wrap the code in the string $$$start_test_executor$$$ ... $$$end_test_executor$$$)"
|
"Then write a small unit test for the executor. (wrap the code in the string $$$start_test_executor$$$ ... $$$end_test_executor$$$)"
|
||||||
# "the snipped should take the local file wolf.obj as input and save the output as png files. "
|
# "the snipped should take the local file wolf.obj as input and save the output as png files. "
|
||||||
+ test_description
|
+ test_description
|
||||||
+ "Finally write the Dockerfile that defines the environment in which the executor runs. The dockerfile runs the test during the build process (wrap the code in the string $$$start_dockerfile$$$ ... $$$end_dockerfile$$$)"
|
+ "Finally write the Dockerfile that defines the environment with all necessary dependencies which the executor uses. "
|
||||||
|
"It is important to make sure that all libs are installed that are required by the python packages. "
|
||||||
|
"The base image of the Dockerfile is jinaai/jina:3.14.2-dev18-py310-standard. "
|
||||||
|
"The Dockerfile runs the test during the build process (wrap the code in the string $$$start_dockerfile$$$ ... $$$end_dockerfile$$$)"
|
||||||
},
|
},
|
||||||
|
|
||||||
]
|
]
|
||||||
@@ -91,18 +94,17 @@ def find_between(input_string, start, end):
|
|||||||
def clean_content(content):
|
def clean_content(content):
|
||||||
return content.replace('```', '').strip()
|
return content.replace('```', '').strip()
|
||||||
|
|
||||||
|
executor_name = find_between(plain_text, f'$$$start_executor_name$$$', f'$$$end_executor_name$$$').strip()
|
||||||
|
|
||||||
for tag, file_ending in [['executor', 'py'], ['requirements', 'txt'], ['test_executor', 'py'], ['dockerfile', '']]:
|
for tag, file_name in [['executor', f'{executor_name}py'], ['requirements', 'requirements.txt'], ['test_executor', 'test_executor.py'], ['ockerfile', 'Dockerfile']]:
|
||||||
content = find_between(plain_text, f'$$$start_{tag}$$$', f'$$$end_{tag}$$$')
|
content = find_between(plain_text, f'$$$start_{tag}$$$', f'$$$end_{tag}$$$')
|
||||||
clean = clean_content(content)
|
clean = clean_content(content)
|
||||||
file_name = f'{tag}.{file_ending}' if file_ending else tag
|
|
||||||
folder = 'executor'
|
folder = 'executor'
|
||||||
full_path = os.path.join(folder, file_name)
|
full_path = os.path.join(folder, file_name)
|
||||||
os.makedirs(folder, exist_ok=True)
|
os.makedirs(folder, exist_ok=True)
|
||||||
with open(full_path, 'w') as f:
|
with open(full_path, 'w') as f:
|
||||||
f.write(clean)
|
f.write(clean)
|
||||||
|
|
||||||
executor_name = find_between(plain_text, f'$$$start_executor_name$$$', f'$$$end_executor_name$$$').strip()
|
|
||||||
config_content = f'''
|
config_content = f'''
|
||||||
jtype: {executor_name}
|
jtype: {executor_name}
|
||||||
py_modules:
|
py_modules:
|
||||||
@@ -113,7 +115,7 @@ metas:
|
|||||||
with open('executor/config.yml', 'w') as f:
|
with open('executor/config.yml', 'w') as f:
|
||||||
f.write(config_content)
|
f.write(config_content)
|
||||||
|
|
||||||
cmd = 'jina hub push executor/.'
|
cmd = 'jina hub push executor/. --verbose'
|
||||||
os.system(cmd)
|
os.system(cmd)
|
||||||
|
|
||||||
flow = f'''
|
flow = f'''
|
||||||
@@ -136,14 +138,10 @@ executors:
|
|||||||
JINA_LOG_LEVEL: DEBUG
|
JINA_LOG_LEVEL: DEBUG
|
||||||
jcloud:
|
jcloud:
|
||||||
expose: true
|
expose: true
|
||||||
autoscale:
|
|
||||||
min: 4
|
|
||||||
max: 15
|
|
||||||
metric: concurrency
|
|
||||||
target: 1
|
|
||||||
resources:
|
resources:
|
||||||
instance: C4
|
instance: C4
|
||||||
capacity: spot
|
capacity: spot
|
||||||
|
replicas: 1
|
||||||
'''
|
'''
|
||||||
full_flow_path = os.path.join('executor', 'flow.yml')
|
full_flow_path = os.path.join('executor', 'flow.yml')
|
||||||
with open(full_flow_path, 'w') as f:
|
with open(full_flow_path, 'w') as f:
|
||||||
@@ -153,7 +151,9 @@ cloud_flow = CloudFlow(path=full_flow_path).__enter__()
|
|||||||
host = cloud_flow.endpoints['gateway']
|
host = cloud_flow.endpoints['gateway']
|
||||||
client = Client(host=host)
|
client = Client(host=host)
|
||||||
|
|
||||||
response = client.post('/index', inputs=DocumentArray([Document(uri='https://double-rhyme.com/logo_en_white2.png')]))
|
d = Document(uri='https://double-rhyme.com/logo_en_white2.png')
|
||||||
|
d.load_uri_to_blob()
|
||||||
|
response = client.post('/index', inputs=DocumentArray([d]))
|
||||||
response[0].summary()
|
response[0].summary()
|
||||||
|
|
||||||
# "Write an executor using open3d that takes 3d models in obj format (within a DocumentArray) as input and returns 3 2d renderings for each 3d model from unique random angles as output (as DocumentArray). Each document of the output DocumentArray has 3 chunks. Each chunk is one of the 2d renderings as png. "
|
# "Write an executor using open3d that takes 3d models in obj format (within a DocumentArray) as input and returns 3 2d renderings for each 3d model from unique random angles as output (as DocumentArray). Each document of the output DocumentArray has 3 chunks. Each chunk is one of the 2d renderings as png. "
|
||||||
|
|||||||
Reference in New Issue
Block a user