mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2026-01-07 15:44:24 +01:00
➕ refactor: summarize error message without line number
This commit is contained in:
@@ -136,7 +136,8 @@ data = {{
|
||||
}}
|
||||
response = requests.post(url, headers=headers, data=data)
|
||||
assert response.status_code == 200
|
||||
print('This is the text from the audio file:', response.text)'''
|
||||
print('This is the text from the audio file:', response.text)''',
|
||||
'use any library',
|
||||
# f'''\
|
||||
# import openai
|
||||
# audio_file= open("/path/to/file/audio.mp3", "rb")
|
||||
@@ -160,7 +161,7 @@ def test_generation_level_4(microservice_dir, mock_input_sequence):
|
||||
f'''Given an audio file (1min wav) of speech,
|
||||
1. convert it to text using the Whisper API.
|
||||
2. Summarize the text while still maintaining the key facts.
|
||||
3. Create an audio file of the summarized text using a tts library.
|
||||
3. Create an audio file of the summarized text using via tts.
|
||||
4. Return the the audio file as base64 encoded binary.
|
||||
''',
|
||||
str(microservice_dir),
|
||||
|
||||
@@ -17,9 +17,24 @@ def test_no_search():
|
||||
def test_get_used_tools(tmpdir):
|
||||
os.environ['VERBOSE'] = 'true'
|
||||
GPTSession(os.path.join(str(tmpdir), 'log.json'), model='gpt-3.5-turbo')
|
||||
used_tools = PM.get_used_tools('''\
|
||||
used_tools = PM.get_used_apis('''\
|
||||
This microservice listens for incoming requests and generates a fixed output of "test" upon receiving a request. \
|
||||
The response sent back to the requester includes the output as a string parameter. \
|
||||
No specific request parameters are required, and the response always follows a fixed schema with a single "output" parameter.'''
|
||||
)
|
||||
assert used_tools == []
|
||||
)
|
||||
assert used_tools == []
|
||||
|
||||
def test_get_used_tools_2(tmpdir):
|
||||
os.environ['VERBOSE'] = 'true'
|
||||
GPTSession(os.path.join(str(tmpdir), 'log.json'), model='gpt-3.5-turbo')
|
||||
description = '''\
|
||||
This microservice accepts a 1-minute WAV audio file of speech, encoded as a base64 binary string, and performs the following tasks:
|
||||
|
||||
1. Converts the audio file to text using the Whisper API.
|
||||
2. Summarizes the text while preserving key facts using gpt_3_5_turbo.
|
||||
3. Generates an audio file of the summarized text using a text-to-speech (TTS) library.
|
||||
4. Encodes the resulting audio file as a base64 binary string.
|
||||
|
||||
The microservice returns the summarized text converted to audio and encoded as a base64 binary string.'''
|
||||
used_tools = PM.get_used_apis(description)
|
||||
assert used_tools == ['Whisper API', 'gpt_3_5_turbo', 'text-to-speech (TTS) library']
|
||||
|
||||
Reference in New Issue
Block a user