mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-23 08:34:20 +01:00
feat: more stable
This commit is contained in:
120
micro_chain.py
120
micro_chain.py
@@ -1,3 +1,4 @@
|
|||||||
|
import json
|
||||||
import random
|
import random
|
||||||
|
|
||||||
from main import extract_content_from_result, write_config_yml, get_all_executor_files_with_content, files_to_string
|
from main import extract_content_from_result, write_config_yml, get_all_executor_files_with_content, files_to_string
|
||||||
@@ -18,20 +19,17 @@ def create_executor(
|
|||||||
executor_description,
|
executor_description,
|
||||||
test_scenario,
|
test_scenario,
|
||||||
executor_name,
|
executor_name,
|
||||||
|
package,
|
||||||
is_chain_of_thought=False,
|
is_chain_of_thought=False,
|
||||||
):
|
):
|
||||||
|
EXECUTOR_FOLDER_v1 = get_executor_path(package, 1)
|
||||||
recreate_folder('executor')
|
|
||||||
EXECUTOR_FOLDER_v1 = 'executor/v1'
|
|
||||||
recreate_folder(EXECUTOR_FOLDER_v1)
|
recreate_folder(EXECUTOR_FOLDER_v1)
|
||||||
recreate_folder('flow')
|
recreate_folder('flow')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
print_colored('', '############# Executor #############', 'red')
|
print_colored('', '############# Executor #############', 'red')
|
||||||
user_query = (
|
user_query = (
|
||||||
general_guidelines()
|
general_guidelines()
|
||||||
+ executor_file_task(executor_name, executor_description, test_scenario)
|
+ executor_file_task(executor_name, executor_description, test_scenario, package)
|
||||||
+ chain_of_thought_creation()
|
+ chain_of_thought_creation()
|
||||||
)
|
)
|
||||||
conversation = gpt.Conversation()
|
conversation = gpt.Conversation()
|
||||||
@@ -116,24 +114,32 @@ print(response[0].text) # can also be blob in case of image/audio..., this shoul
|
|||||||
conversation = gpt.Conversation()
|
conversation = gpt.Conversation()
|
||||||
conversation.query(user_query)
|
conversation.query(user_query)
|
||||||
playground_content_raw = conversation.query(
|
playground_content_raw = conversation.query(
|
||||||
f"General rules: " + not_allowed() + chain_of_thought_optimization('python', 'playground.py'))
|
f"General rules: " + not_allowed() + chain_of_thought_optimization('python', 'app.py'))
|
||||||
playground_content = extract_content_from_result(playground_content_raw, 'playground.py')
|
playground_content = extract_content_from_result(playground_content_raw, 'app.py')
|
||||||
persist_file(playground_content, f'{executor_path}/playground.py')
|
persist_file(playground_content, f'{executor_path}/app.py')
|
||||||
|
|
||||||
|
def get_executor_path(package, version):
|
||||||
|
package_path = '_'.join(package)
|
||||||
|
return f'executor/{package_path}/v{version}'
|
||||||
|
|
||||||
def debug_executor():
|
def debug_executor(package, executor_description, test_scenario):
|
||||||
MAX_DEBUGGING_ITERATIONS = 20
|
MAX_DEBUGGING_ITERATIONS = 10
|
||||||
error_before = ''
|
error_before = ''
|
||||||
for i in range(1, MAX_DEBUGGING_ITERATIONS):
|
for i in range(1, MAX_DEBUGGING_ITERATIONS):
|
||||||
# error_docker = build_docker(f'executor/v{i}')
|
previous_executor_path = get_executor_path(package, i)
|
||||||
log_hubble = push_executor(f'executor/v{i}')
|
next_executor_path = get_executor_path(package, i + 1)
|
||||||
|
log_hubble = push_executor(previous_executor_path)
|
||||||
error = process_error_message(log_hubble)
|
error = process_error_message(log_hubble)
|
||||||
if error:
|
if error:
|
||||||
recreate_folder(f'executor/v{i + 1}')
|
recreate_folder(next_executor_path)
|
||||||
file_name_to_content = get_all_executor_files_with_content(f'executor/v{i}')
|
file_name_to_content = get_all_executor_files_with_content(previous_executor_path)
|
||||||
all_files_string = files_to_string(file_name_to_content)
|
all_files_string = files_to_string(file_name_to_content)
|
||||||
user_query = (
|
user_query = (
|
||||||
f"General rules: " + not_allowed()
|
f"General rules: " + not_allowed()
|
||||||
|
+ 'Here is the description of the task the executor must solve:\n'
|
||||||
|
+ executor_description
|
||||||
|
+ '\n\nHere is the test scenario the executor must pass:\n'
|
||||||
|
+ test_scenario
|
||||||
+ 'Here are all the files I use:\n'
|
+ 'Here are all the files I use:\n'
|
||||||
+ all_files_string
|
+ all_files_string
|
||||||
+ (('This is an error that is already fixed before:\n'
|
+ (('This is an error that is already fixed before:\n'
|
||||||
@@ -158,38 +164,74 @@ def debug_executor():
|
|||||||
file_name_to_content[file_name] = updated_file
|
file_name_to_content[file_name] = updated_file
|
||||||
|
|
||||||
for file_name, content in file_name_to_content.items():
|
for file_name, content in file_name_to_content.items():
|
||||||
persist_file(content, f'executor/v{i + 1}/{file_name}')
|
persist_file(content, f'{next_executor_path}/{file_name}')
|
||||||
error_before = error
|
error_before = error
|
||||||
|
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
if i == MAX_DEBUGGING_ITERATIONS - 1:
|
if i == MAX_DEBUGGING_ITERATIONS - 1:
|
||||||
raise Exception('Could not debug the executor.')
|
raise Exception('Could not debug the executor.')
|
||||||
return f'executor/v{i}'
|
return get_executor_path(package, i)
|
||||||
|
|
||||||
|
|
||||||
def main(
|
def main(
|
||||||
executor_description,
|
executor_description,
|
||||||
input_modality,
|
|
||||||
output_modality,
|
|
||||||
test_scenario,
|
test_scenario,
|
||||||
|
threads=3,
|
||||||
):
|
):
|
||||||
executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
|
executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
|
||||||
create_executor(executor_description, test_scenario, executor_name)
|
|
||||||
# executor_name = 'MicroChainExecutor790050'
|
packages = get_possible_packages(executor_description, threads)
|
||||||
executor_path = debug_executor()
|
recreate_folder('executor')
|
||||||
# print('Executor can be built locally, now we will push it to the cloud.')
|
for package in packages:
|
||||||
# jina_cloud.push_executor(executor_path)
|
create_executor(executor_description, test_scenario, executor_name, package)
|
||||||
print('Deploy a jina flow')
|
# executor_name = 'MicroChainExecutor790050'
|
||||||
host = jina_cloud.deploy_flow(executor_name, 'flow')
|
executor_path = debug_executor(package, executor_description, test_scenario)
|
||||||
print(f'Flow is deployed create the playground for {host}')
|
# print('Executor can be built locally, now we will push it to the cloud.')
|
||||||
create_playground(executor_name, executor_path, host)
|
# jina_cloud.push_executor(executor_path)
|
||||||
print(
|
print('Deploy a jina flow')
|
||||||
'Executor name:', executor_name, '\n',
|
host = jina_cloud.deploy_flow(executor_name, 'flow')
|
||||||
'Executor path:', executor_path, '\n',
|
print(f'Flow is deployed create the playground for {host}')
|
||||||
'Host:', host, '\n',
|
create_playground(executor_name, executor_path, host)
|
||||||
'Playground:', f'streamlit run {executor_path}/playground.py', '\n',
|
print(
|
||||||
)
|
'Executor name:', executor_name, '\n',
|
||||||
|
'Executor path:', executor_path, '\n',
|
||||||
|
'Host:', host, '\n',
|
||||||
|
'Playground:', f'streamlit run {executor_path}/app.py', '\n',
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_possible_packages(executor_description, threads):
|
||||||
|
print_colored('', '############# What package to use? #############', 'red')
|
||||||
|
user_query = f'''
|
||||||
|
Here is the task description of the problme you need to solve:
|
||||||
|
"{executor_description}"
|
||||||
|
First, write down all the subtasks you need to solve which require python packages.
|
||||||
|
For each subtask:
|
||||||
|
Provide a list of 1 to 3 python packages you could use to solve the subtask.
|
||||||
|
For each package:
|
||||||
|
Write down some non-obvious thoughts about the challenges you might face for the task and give multiple approaches on how you handle them.
|
||||||
|
For example, there might be some packages you must not use because they do not obay the rules:
|
||||||
|
{not_allowed()}
|
||||||
|
Discuss the pros and cons for all of these packages.
|
||||||
|
Create a list of package subsets that you could use to solve the task.
|
||||||
|
The list is sorted in a way that the most promising subset of packages is at the top.
|
||||||
|
The maximum length of the list is 5.
|
||||||
|
|
||||||
|
The output must be a list of lists wrapped into ``` and starting with **packages.csv** like this:
|
||||||
|
**packages.csv**
|
||||||
|
```
|
||||||
|
package1,package2
|
||||||
|
package2,package3,...
|
||||||
|
...
|
||||||
|
```
|
||||||
|
'''
|
||||||
|
conversation = gpt.Conversation()
|
||||||
|
packages_raw = conversation.query(user_query)
|
||||||
|
packages_csv_string = extract_content_from_result(packages_raw, 'packages.csv')
|
||||||
|
packages = [package.split(',') for package in packages_csv_string.split('\n')]
|
||||||
|
packages = packages[:threads]
|
||||||
|
return packages
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -201,12 +243,14 @@ if __name__ == '__main__':
|
|||||||
# test_scenario='Takes https://www2.deloitte.com/content/dam/Deloitte/de/Documents/about-deloitte/Deloitte-Unternehmensgeschichte.pdf and returns a string that is at least 100 characters long',
|
# test_scenario='Takes https://www2.deloitte.com/content/dam/Deloitte/de/Documents/about-deloitte/Deloitte-Unternehmensgeschichte.pdf and returns a string that is at least 100 characters long',
|
||||||
# )
|
# )
|
||||||
|
|
||||||
|
# main(
|
||||||
|
# executor_description="The executor takes a url of a website as input and returns the logo of the website as an image.",
|
||||||
|
# test_scenario='Takes https://jina.ai/ as input and returns an svg image of the logo.',
|
||||||
|
# )
|
||||||
|
|
||||||
main(
|
main(
|
||||||
executor_description="The executor takes a url of a website as input and returns the logo of the website as an image.",
|
executor_description="The executor takes a url of a website as input and classifies it as either individual or business.",
|
||||||
input_modality='url',
|
test_scenario='Takes https://jina.ai/ as input and returns "business". Takes https://hanxiao.io/ as input and returns "individual". ',
|
||||||
output_modality='image',
|
|
||||||
test_scenario='Takes https://jina.ai/ as input and returns an svg image of the logo.',
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# # # ######## Level 1 task #########
|
# # # ######## Level 1 task #########
|
||||||
|
|||||||
@@ -77,7 +77,7 @@ with:
|
|||||||
jcloud:
|
jcloud:
|
||||||
version: 3.14.2.dev18
|
version: 3.14.2.dev18
|
||||||
labels:
|
labels:
|
||||||
team: now
|
creator: microchain
|
||||||
name: mybelovedocrflow
|
name: mybelovedocrflow
|
||||||
executors:
|
executors:
|
||||||
- name: {executor_name.lower()}
|
- name: {executor_name.lower()}
|
||||||
@@ -86,7 +86,7 @@ executors:
|
|||||||
JINA_LOG_LEVEL: DEBUG
|
JINA_LOG_LEVEL: DEBUG
|
||||||
jcloud:
|
jcloud:
|
||||||
resources:
|
resources:
|
||||||
instance: C4
|
instance: C2
|
||||||
capacity: spot
|
capacity: spot
|
||||||
'''
|
'''
|
||||||
full_flow_path = os.path.join(dest_folder,
|
full_flow_path = os.path.join(dest_folder,
|
||||||
|
|||||||
@@ -27,14 +27,12 @@ def _task(task, tag_name, file_name):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def executor_file_task(executor_name, executor_description, test_scenario, input_modality, input_doc_field,
|
def executor_file_task(executor_name, executor_description, test_scenario, package):
|
||||||
output_modality, output_doc_field):
|
|
||||||
return _task(f'''
|
return _task(f'''
|
||||||
Write the executor called '{executor_name}'.
|
Write the executor called '{executor_name}'.
|
||||||
It matches the following description: '{executor_description}'.
|
It matches the following description: '{executor_description}'.
|
||||||
It will be tested with the following scenario: '{test_scenario}'.
|
It will be tested with the following scenario: '{test_scenario}'.
|
||||||
It gets a DocumentArray as input where each document has the input modality '{input_modality}' and can be accessed via document.{input_doc_field}.
|
For the implementation use the following package: '{package}'.
|
||||||
It returns a DocumentArray as output where each document has the output modality '{output_modality}' that is stored in document.{output_doc_field}.
|
|
||||||
Have in mind that d.uri is never a path to a local file. It is always a url.
|
Have in mind that d.uri is never a path to a local file. It is always a url.
|
||||||
''' + not_allowed(),
|
''' + not_allowed(),
|
||||||
EXECUTOR_FILE_TAG,
|
EXECUTOR_FILE_TAG,
|
||||||
@@ -53,7 +51,8 @@ def test_executor_file_task(executor_name, test_scenario):
|
|||||||
+ "Use the following import to import the executor: "
|
+ "Use the following import to import the executor: "
|
||||||
f"from executor import {executor_name} "
|
f"from executor import {executor_name} "
|
||||||
+ not_allowed()
|
+ not_allowed()
|
||||||
+ "The test is not allowed to open local files. ",
|
+ "The test is not allowed to open local files. "
|
||||||
|
+ "The test is not allowed to mock a function of the executor. ",
|
||||||
TEST_EXECUTOR_FILE_TAG,
|
TEST_EXECUTOR_FILE_TAG,
|
||||||
TEST_EXECUTOR_FILE_NAME
|
TEST_EXECUTOR_FILE_NAME
|
||||||
)
|
)
|
||||||
@@ -105,8 +104,7 @@ def streamlit_file_task():
|
|||||||
def chain_of_thought_creation():
|
def chain_of_thought_creation():
|
||||||
return (
|
return (
|
||||||
"First, write down some non-obvious thoughts about the challenges of the task and give multiple approaches on how you handle them. "
|
"First, write down some non-obvious thoughts about the challenges of the task and give multiple approaches on how you handle them. "
|
||||||
"For example, there are different libraries you could use and not all of them obay the rules: "
|
"For example, the given package you could used in different ways and not all of them obay the rules: "
|
||||||
+ not_allowed()
|
|
||||||
+ "Discuss the pros and cons for all of these approaches and then decide for one of the approaches. "
|
+ "Discuss the pros and cons for all of these approaches and then decide for one of the approaches. "
|
||||||
"Then write as I told you. "
|
"Then write as I told you. "
|
||||||
)
|
)
|
||||||
@@ -131,4 +129,7 @@ The executor is not allowed to use the GPU.
|
|||||||
The executor is not allowed to access a database.
|
The executor is not allowed to access a database.
|
||||||
The executor is not allowed to access a display.
|
The executor is not allowed to access a display.
|
||||||
The executor is not allowed to access external apis.
|
The executor is not allowed to access external apis.
|
||||||
|
The executor is not allowed to access the file system.
|
||||||
|
The executor is not allowed to use a pre-trained model.
|
||||||
|
The executor is not allowed to train a model.
|
||||||
'''
|
'''
|
||||||
5
when_alignment_goes_wrong.txt
Normal file
5
when_alignment_goes_wrong.txt
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
# it mocked the executor function to fix the test
|
||||||
|
executor.classify_website = mock_classify_website
|
||||||
|
|
||||||
|
# it attached a fake screen to the test execution
|
||||||
|
RUN xvfb-run -s "-screen 0 640x480x24" python test_executor.py
|
||||||
Reference in New Issue
Block a user