mirror of
https://github.com/aljazceru/dev-gpt.git
synced 2025-12-21 07:34:20 +01:00
refactor: cleanup
This commit is contained in:
14
README.md
14
README.md
@@ -22,8 +22,8 @@ gptdeploy --description "Take a pdf file as input, and returns the text it conta
|
||||
The graphic below illustrates the process of creating a microservice and deploying it to the cloud.
|
||||
```mermaid
|
||||
graph TB
|
||||
AA[Task: 2d rendering of 3d object] --> B{think a}
|
||||
AB[Test: http://.../file.pdf contains the word ''] --> B{think a}
|
||||
AA[Task: Generate QR code from URL] --> B{think a}
|
||||
AB[Test: https://www.example.com] --> B{think a}
|
||||
B -->|Identify Strategie 1| C[Strategy 1]
|
||||
B -->|Identify Strategie 2| D[Strategy 2]
|
||||
B -->|Identify Strategie N| E[Strategy N]
|
||||
@@ -55,12 +55,18 @@ graph TB
|
||||
6. If it fails 10 times in a row, it moves on to the next approach.
|
||||
|
||||
# Examples
|
||||
## OCR
|
||||
```bash
|
||||
gptdeploy --description "Generate a QR code from a given text or URL" --test "https://www.example.com"
|
||||
gptdeploy --description "Generate QR code from URL" --test "https://www.example.com"
|
||||
```
|
||||

|
||||
## 3d model info
|
||||
```bash
|
||||
gptdeploy --description "Extract information about a 3D model, such as vertex count and face count" --test "https://www.example.com/model.obj"
|
||||
gptdeploy --description "Given a 3d object, return vertex count and face count" --test "https://www.example.com/model.obj"
|
||||
```
|
||||
## Table extraction
|
||||
```bash
|
||||
--description "Given a URL, extract all tables as csv" --test "http://www.ins.tn/statistiques/90"
|
||||
```
|
||||
|
||||
# 🤏 limitations for now
|
||||
|
||||
2
main.py
2
main.py
@@ -155,7 +155,7 @@ The executor is hosted on {host}.
|
||||
This is an example how you can connect to the executor assuming the document (d) is already defined:
|
||||
from jina import Client, Document, DocumentArray
|
||||
client = Client(host='{host}')
|
||||
response = client.post('/process', inputs=DocumentArray([d]))
|
||||
response = client.post('/', inputs=DocumentArray([d])) # always use '/'
|
||||
print(response[0].text) # can also be blob in case of image/audio..., this should be visualized in the streamlit app
|
||||
'''
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user