refactor: cleanup
62
README.md
@@ -1,31 +1,51 @@
|
||||
|
||||
|
||||
[](https://user-images.githubusercontent.com/11627845/226220484-17810f7c-b184-4a03-9af2-3a977fbb014b.mov)
|
||||
# 🤖 GPT Deploy
|
||||
This project streamlines the creation and deployment of microservices.
|
||||
Simply describe your task using natural language, and the system will automatically build and deploy your microservice.
|
||||
To ensure the executor accurately aligns with your intended task, you can also provide test scenarios.
|
||||
|
||||
# Overview
|
||||
The graphic below illustrates the process of creating a microservice and deploying it to the cloud.
|
||||
```mermaid
|
||||
graph TB
|
||||
A[User Input: Task Description & Test Scenarios] --> B{GPT Deploy}
|
||||
B -->|Identify Strategies| C[Strategy 1]
|
||||
B -->|Identify Strategies| D[Strategy 2]
|
||||
B -->|Identify Strategies| E[Strategy N]
|
||||
C --> F[executor.py, test_executor.py, requirements.txt, Dockerfile]
|
||||
D --> G[executor.py, test_executor.py, requirements.txt, Dockerfile]
|
||||
E --> H[executor.py, test_executor.py, requirements.txt, Dockerfile]
|
||||
F --> I{Build Image}
|
||||
G --> I
|
||||
H --> I
|
||||
I -->|Fail| J[Apply Fix and Retry]
|
||||
J --> I
|
||||
I -->|Success| K[Push Docker Image to Registry]
|
||||
K --> L[Deploy Microservice]
|
||||
L --> M[Create Streamlit Playground]
|
||||
M --> N[User Tests Microservice]
|
||||
```
|
||||
1. GPT Deploy identifies several strategies to implement your task.
|
||||
2. It tests each strategy until it finds one that works.
|
||||
3. For each strategy, it creates the following files:
|
||||
- executor.py: This is the main implementation of the microservice.
|
||||
- test_executor.py: These are test cases to ensure the microservice works as expected.
|
||||
- requirements.txt: This file lists the packages needed by the microservice and its tests.
|
||||
- Dockerfile: This file is used to run the microservice in a container and also runs the tests when building the image.
|
||||
4. GPT Deploy attempts to build the image. If the build fails, it uses the error message to apply a fix and tries again to build the image.
|
||||
5. Once it finds a successful strategy, it:
|
||||
- Pushes the Docker image to the registry.
|
||||
- Deploys the microservice.
|
||||
- Creates a Streamlit playground where you can test the microservice.
|
||||
6. If it fails 10 times in a row, it moves on to the next approach.
|
||||
|
||||
# 🔮 vision
|
||||
create, deploy and update your microservice infrastructure
|
||||
[//]: # ([](https://user-images.githubusercontent.com/11627845/226220484-17810f7c-b184-4a03-9af2-3a977fbb014b.mov))
|
||||
|
||||
# 🏗 frontend description
|
||||
The microchain-frontend is used to define the graph of microservice, their interfaces and their functionality.
|
||||
Based on this definition, the backend will be generated automatically.
|
||||
|
||||
# 🏗 usage single microservice
|
||||
## you provide
|
||||
- input_modality
|
||||
- output_modality
|
||||
- description of the functionality of the transformation the microservice is handling
|
||||
- examples of input and output pairs
|
||||
|
||||
## you get
|
||||
- a microservice together with a playground
|
||||
- the code to run requests
|
||||
|
||||
# 🤏 limitations for now
|
||||
- stateless microservices only
|
||||
- deterministic microservices only to make sure input and output pairs can be used
|
||||
|
||||
# TODO:
|
||||
- [ ] attach playground
|
||||
- [ ] subtask executors
|
||||
-
|
||||
# 🔮 vision
|
||||
Use natural language interface to create, deploy and update your microservice infrastructure.
|
||||
|
||||
|
Before Width: | Height: | Size: 3.8 KiB After Width: | Height: | Size: 3.8 KiB |
|
Before Width: | Height: | Size: 5.2 KiB After Width: | Height: | Size: 5.2 KiB |
|
Before Width: | Height: | Size: 9.4 KiB After Width: | Height: | Size: 9.4 KiB |
|
Before Width: | Height: | Size: 2.6 KiB After Width: | Height: | Size: 2.6 KiB |
478
main.py
@@ -1,17 +1,16 @@
|
||||
# import importlib
|
||||
import random
|
||||
|
||||
from src import gpt, jina_cloud
|
||||
from src.jina_cloud import push_executor, process_error_message
|
||||
from src.prompt_tasks import general_guidelines, executor_file_task, chain_of_thought_creation, test_executor_file_task, \
|
||||
chain_of_thought_optimization, requirements_file_task, docker_file_task, not_allowed
|
||||
from src.utils.io import recreate_folder, persist_file
|
||||
from src.utils.string_tools import print_colored
|
||||
|
||||
|
||||
import os
|
||||
import re
|
||||
#
|
||||
# from src import gpt, jina_cloud
|
||||
# from src.constants import FILE_AND_TAG_PAIRS, EXECUTOR_FOLDER_v1, EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME, STREAMLIT_FILE_NAME
|
||||
# from src.jina_cloud import update_client_line_in_file
|
||||
# from src.prompt_system import system_base_definition
|
||||
# from src.prompt_tasks import general_guidelines, executor_file_task, requirements_file_task, \
|
||||
# test_executor_file_task, docker_file_task, client_file_task, streamlit_file_task, chain_of_thought_creation
|
||||
# from src.utils.io import recreate_folder
|
||||
# from src.utils.string_tools import find_differences
|
||||
#
|
||||
#
|
||||
|
||||
from src.constants import FILE_AND_TAG_PAIRS
|
||||
|
||||
|
||||
@@ -22,16 +21,7 @@ def extract_content_from_result(plain_text, file_name):
|
||||
return match.group(1).strip()
|
||||
else:
|
||||
return ''
|
||||
#
|
||||
#
|
||||
# def extract_and_write(plain_text, dest_folder):
|
||||
# for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
# clean = extract_content_from_result(plain_text, file_name)
|
||||
# full_path = os.path.join(dest_folder, file_name)
|
||||
# with open(full_path, 'w') as f:
|
||||
# f.write(clean)
|
||||
#
|
||||
#
|
||||
|
||||
def write_config_yml(executor_name, dest_folder):
|
||||
config_content = f'''
|
||||
jtype: {executor_name}
|
||||
@@ -42,8 +32,7 @@ metas:
|
||||
'''
|
||||
with open(os.path.join(dest_folder, 'config.yml'), 'w') as f:
|
||||
f.write(config_content)
|
||||
#
|
||||
#
|
||||
|
||||
def get_all_executor_files_with_content(folder_path):
|
||||
file_name_to_content = {}
|
||||
for filename in os.listdir(folder_path):
|
||||
@@ -55,58 +44,7 @@ def get_all_executor_files_with_content(folder_path):
|
||||
file_name_to_content[filename] = content
|
||||
|
||||
return file_name_to_content
|
||||
#
|
||||
#
|
||||
#
|
||||
#
|
||||
# def build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
# output_doc_field, output_modality, test_in, test_out):
|
||||
# system_definition = (
|
||||
# system_base_definition
|
||||
# + "The user is asking you to create an executor with all the necessary files "
|
||||
# "and you write the complete code without leaving something out. "
|
||||
# )
|
||||
# user_query = (
|
||||
# general_guidelines()
|
||||
# + executor_file_task(executor_name, executor_description, input_modality, input_doc_field,
|
||||
# output_modality, output_doc_field)
|
||||
# + test_executor_file_task(executor_name, test_in, test_out)
|
||||
# + requirements_file_task()
|
||||
# + docker_file_task()
|
||||
# + client_file_task()
|
||||
# + streamlit_file_task()
|
||||
# + chain_of_thought_creation()
|
||||
# )
|
||||
# plain_text = gpt.get_response(system_definition, user_query)
|
||||
# return plain_text
|
||||
#
|
||||
#
|
||||
# def build_production_ready_implementation(all_executor_files_string):
|
||||
# system_definition = (
|
||||
# system_base_definition
|
||||
# + f"The user gives you the code of the executor and all other files needed ({', '.join([e[0] for e in FILE_AND_TAG_PAIRS])}) "
|
||||
# f"The files may contain bugs. Fix all of them. "
|
||||
#
|
||||
# )
|
||||
# user_query = (
|
||||
# 'Make it production ready. '
|
||||
# "Fix all files and add all missing code. "
|
||||
# "Keep the same format as given to you. "
|
||||
# f"Some files might have only prototype implementations and are not production ready. Add all the missing code. "
|
||||
# f"Some imports might be missing. Make sure to add them. "
|
||||
# f"Some libraries might be missing from the requirements.txt. Make sure to install them."
|
||||
# f"Somthing might be wrong in the Dockerfile. For example, some libraries might be missing. Install them."
|
||||
# f"Or not all files are copied to the right destination in the Dockerfile. Copy them to the correct destination. "
|
||||
# "First write down an extensive list of obvious and non-obvious observations about the parts that could need an adjustment. Explain why. "
|
||||
# "Think about if all the changes are required and finally decide for the changes you want to make. "
|
||||
# f"Output all the files even the ones that did not change. "
|
||||
# "Here are the files: \n\n"
|
||||
# + all_executor_files_string
|
||||
# )
|
||||
# all_executor_files_string_improved = gpt.get_response(system_definition, user_query)
|
||||
# print('DIFFERENCES:', find_differences(all_executor_files_string, all_executor_files_string_improved))
|
||||
# return all_executor_files_string_improved
|
||||
#
|
||||
|
||||
def files_to_string(file_name_to_content):
|
||||
all_executor_files_string = ''
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
@@ -116,84 +54,322 @@ def files_to_string(file_name_to_content):
|
||||
all_executor_files_string += file_name_to_content[file_name]
|
||||
all_executor_files_string += '\n```\n\n'
|
||||
return all_executor_files_string
|
||||
#
|
||||
#
|
||||
# def main(
|
||||
# executor_name,
|
||||
# executor_description,
|
||||
# input_modality,
|
||||
# input_doc_field,
|
||||
# output_modality,
|
||||
# output_doc_field,
|
||||
# test_in,
|
||||
# test_out,
|
||||
# do_validation=True
|
||||
# ):
|
||||
# recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
# recreate_folder(EXECUTOR_FOLDER_v2)
|
||||
# recreate_folder('flow')
|
||||
#
|
||||
# all_executor_files_string = build_prototype_implementation(executor_description, executor_name, input_doc_field, input_modality,
|
||||
# output_doc_field, output_modality, test_in, test_out)
|
||||
# extract_and_write(all_executor_files_string, EXECUTOR_FOLDER_v1)
|
||||
# write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
# file_name_to_content_v1 = get_all_executor_files_with_content(EXECUTOR_FOLDER_v1)
|
||||
# all_executor_files_string_no_instructions = files_to_string(file_name_to_content_v1)
|
||||
#
|
||||
# all_executor_files_string_improved = build_production_ready_implementation(all_executor_files_string_no_instructions)
|
||||
# extract_and_write(all_executor_files_string_improved, EXECUTOR_FOLDER_v2)
|
||||
# write_config_yml(executor_name, EXECUTOR_FOLDER_v2)
|
||||
#
|
||||
# jina_cloud.push_executor(EXECUTOR_FOLDER_v2)
|
||||
#
|
||||
# host = jina_cloud.deploy_flow(executor_name, do_validation, 'flow')
|
||||
#
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, CLIENT_FILE_NAME), host)
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v1, STREAMLIT_FILE_NAME), host)
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, CLIENT_FILE_NAME), host)
|
||||
# update_client_line_in_file(os.path.join(EXECUTOR_FOLDER_v2, STREAMLIT_FILE_NAME), host)
|
||||
#
|
||||
# if do_validation:
|
||||
# importlib.import_module("executor_v1.client")
|
||||
#
|
||||
# return get_all_executor_files_with_content(EXECUTOR_FOLDER_v2)
|
||||
#
|
||||
#
|
||||
# if __name__ == '__main__':
|
||||
# # ######### Level 2 task #########
|
||||
# # main(
|
||||
# # executor_name='My3DTo2DExecutor',
|
||||
# # executor_description="The executor takes 3D objects in obj format as input and outputs a 2D image projection of that object",
|
||||
# # input_modality='3d',
|
||||
# # input_doc_field='blob',
|
||||
# # output_modality='image',
|
||||
# # output_doc_field='blob',
|
||||
# # test_in='https://raw.githubusercontent.com/makehumancommunity/communityassets-wip/master/clothes/leotard_fs/leotard_fs.obj',
|
||||
# # test_out='the output should be exactly one image in png format',
|
||||
# # do_validation=False
|
||||
# # )
|
||||
#
|
||||
|
||||
|
||||
def wrap_content_in_code_block(executor_content, file_name, tag):
|
||||
return f'**{file_name}**\n```{tag}\n{executor_content}\n```\n\n'
|
||||
|
||||
|
||||
def create_executor(
|
||||
executor_description,
|
||||
test_scenario,
|
||||
executor_name,
|
||||
package,
|
||||
is_chain_of_thought=False,
|
||||
):
|
||||
EXECUTOR_FOLDER_v1 = get_executor_path(package, 1)
|
||||
recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
recreate_folder('flow')
|
||||
|
||||
print_colored('', '############# Executor #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ executor_file_task(executor_name, executor_description, test_scenario, package)
|
||||
+ chain_of_thought_creation()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
executor_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
executor_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() + chain_of_thought_optimization('python', 'executor.py'))
|
||||
executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
|
||||
|
||||
persist_file(executor_content, EXECUTOR_FOLDER_v1 + '/executor.py')
|
||||
|
||||
print_colored('', '############# Test Executor #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ test_executor_file_task(executor_name, test_scenario)
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
test_executor_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
test_executor_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() +
|
||||
chain_of_thought_optimization('python', 'test_executor.py')
|
||||
+ "Don't add any additional tests. "
|
||||
)
|
||||
test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
|
||||
persist_file(test_executor_content, EXECUTOR_FOLDER_v1 + '/test_executor.py')
|
||||
|
||||
print_colored('', '############# Requirements #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ requirements_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
requirements_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
requirements_content_raw = conversation.query(
|
||||
chain_of_thought_optimization('', 'requirements.txt') + "Keep the same version of jina ")
|
||||
|
||||
requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
|
||||
persist_file(requirements_content, EXECUTOR_FOLDER_v1 + '/requirements.txt')
|
||||
|
||||
print_colored('', '############# Dockerfile #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
|
||||
+ docker_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
dockerfile_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
dockerfile_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() + chain_of_thought_optimization('dockerfile', 'Dockerfile'))
|
||||
dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
|
||||
persist_file(dockerfile_content, EXECUTOR_FOLDER_v1 + '/Dockerfile')
|
||||
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
|
||||
|
||||
def create_playground(executor_name, executor_path, host):
|
||||
print_colored('', '############# Playground #############', 'red')
|
||||
|
||||
file_name_to_content = get_all_executor_files_with_content(executor_path)
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(file_name_to_content['executor.py'], 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(file_name_to_content['test_executor.py'], 'test_executor.py', 'python')
|
||||
+ f'''
|
||||
Create a playground for the executor {executor_name} using streamlit.
|
||||
The executor is hosted on {host}.
|
||||
This is an example how you can connect to the executor assuming the document (d) is already defined:
|
||||
from jina import Client, Document, DocumentArray
|
||||
client = Client(host='{host}')
|
||||
response = client.post('/process', inputs=DocumentArray([d]))
|
||||
print(response[0].text) # can also be blob in case of image/audio..., this should be visualized in the streamlit app
|
||||
'''
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
playground_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() + chain_of_thought_optimization('python', 'app.py'))
|
||||
playground_content = extract_content_from_result(playground_content_raw, 'app.py')
|
||||
persist_file(playground_content, f'{executor_path}/app.py')
|
||||
|
||||
def get_executor_path(package, version):
|
||||
package_path = '_'.join(package)
|
||||
return f'executor/{package_path}/v{version}'
|
||||
|
||||
def debug_executor(package, executor_description, test_scenario):
|
||||
MAX_DEBUGGING_ITERATIONS = 10
|
||||
error_before = ''
|
||||
for i in range(1, MAX_DEBUGGING_ITERATIONS):
|
||||
previous_executor_path = get_executor_path(package, i)
|
||||
next_executor_path = get_executor_path(package, i + 1)
|
||||
log_hubble = push_executor(previous_executor_path)
|
||||
error = process_error_message(log_hubble)
|
||||
if error:
|
||||
recreate_folder(next_executor_path)
|
||||
file_name_to_content = get_all_executor_files_with_content(previous_executor_path)
|
||||
all_files_string = files_to_string(file_name_to_content)
|
||||
user_query = (
|
||||
f"General rules: " + not_allowed()
|
||||
+ 'Here is the description of the task the executor must solve:\n'
|
||||
+ executor_description
|
||||
+ '\n\nHere is the test scenario the executor must pass:\n'
|
||||
+ test_scenario
|
||||
+ 'Here are all the files I use:\n'
|
||||
+ all_files_string
|
||||
+ (('This is an error that is already fixed before:\n'
|
||||
+ error_before) if error_before else '')
|
||||
+ '\n\nNow, I get the following error:\n'
|
||||
+ error + '\n'
|
||||
+ 'Think quickly about possible reasons. '
|
||||
'Then output the files that need change. '
|
||||
"Don't output files that don't need change. "
|
||||
"If you output a file, then write the complete file. "
|
||||
"Use the exact same syntax to wrap the code:\n"
|
||||
f"**...**\n"
|
||||
f"```...\n"
|
||||
f"...code...\n"
|
||||
f"```\n\n"
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
returned_files_raw = conversation.query(user_query)
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
updated_file = extract_content_from_result(returned_files_raw, file_name)
|
||||
if updated_file:
|
||||
file_name_to_content[file_name] = updated_file
|
||||
|
||||
for file_name, content in file_name_to_content.items():
|
||||
persist_file(content, f'{next_executor_path}/{file_name}')
|
||||
error_before = error
|
||||
|
||||
else:
|
||||
break
|
||||
if i == MAX_DEBUGGING_ITERATIONS - 1:
|
||||
raise MaxDebugTimeReachedException('Could not debug the executor.')
|
||||
return get_executor_path(package, i)
|
||||
|
||||
class MaxDebugTimeReachedException(BaseException):
|
||||
pass
|
||||
|
||||
|
||||
def generate_executor_name(executor_description):
|
||||
conversation = gpt.Conversation()
|
||||
user_query = f'''
|
||||
Generate a name for the executor matching the description:
|
||||
"{executor_description}"
|
||||
The executor name must fulfill the following criteria:
|
||||
- camel case
|
||||
- start with a capital letter
|
||||
- only consists of lower and upper case characters
|
||||
- end with Executor.
|
||||
|
||||
The output is a the raw string wrapped into ``` and starting with **name.txt** like this:
|
||||
**name.txt**
|
||||
```
|
||||
PDFParserExecutor
|
||||
```
|
||||
'''
|
||||
name_raw = conversation.query(user_query)
|
||||
name = extract_content_from_result(name_raw, 'name.txt')
|
||||
return name
|
||||
|
||||
|
||||
def main(
|
||||
executor_description,
|
||||
test_scenario,
|
||||
threads=3,
|
||||
):
|
||||
generated_name = generate_executor_name(executor_description)
|
||||
executor_name = f'{generated_name}{random.randint(0, 1000_000)}'
|
||||
|
||||
packages = get_possible_packages(executor_description, threads)
|
||||
recreate_folder('executor')
|
||||
for package in packages:
|
||||
try:
|
||||
create_executor(executor_description, test_scenario, executor_name, package)
|
||||
# executor_name = 'MicroChainExecutor790050'
|
||||
executor_path = debug_executor(package, executor_description, test_scenario)
|
||||
# print('Executor can be built locally, now we will push it to the cloud.')
|
||||
# jina_cloud.push_executor(executor_path)
|
||||
print('Deploy a jina flow')
|
||||
host = jina_cloud.deploy_flow(executor_name, executor_path)
|
||||
print(f'Flow is deployed create the playground for {host}')
|
||||
create_playground(executor_name, executor_path, host)
|
||||
except MaxDebugTimeReachedException:
|
||||
print('Could not debug the executor.')
|
||||
continue
|
||||
print(
|
||||
'Executor name:', executor_name, '\n',
|
||||
'Executor path:', executor_path, '\n',
|
||||
'Host:', host, '\n',
|
||||
'Playground:', f'streamlit run {executor_path}/app.py', '\n',
|
||||
)
|
||||
break
|
||||
|
||||
|
||||
def get_possible_packages(executor_description, threads):
|
||||
print_colored('', '############# What package to use? #############', 'red')
|
||||
user_query = f'''
|
||||
Here is the task description of the problme you need to solve:
|
||||
"{executor_description}"
|
||||
First, write down all the subtasks you need to solve which require python packages.
|
||||
For each subtask:
|
||||
Provide a list of 1 to 3 python packages you could use to solve the subtask. Prefer modern packages.
|
||||
For each package:
|
||||
Write down some non-obvious thoughts about the challenges you might face for the task and give multiple approaches on how you handle them.
|
||||
For example, there might be some packages you must not use because they do not obay the rules:
|
||||
{not_allowed()}
|
||||
Discuss the pros and cons for all of these packages.
|
||||
Create a list of package subsets that you could use to solve the task.
|
||||
The list is sorted in a way that the most promising subset of packages is at the top.
|
||||
The maximum length of the list is 5.
|
||||
|
||||
The output must be a list of lists wrapped into ``` and starting with **packages.csv** like this:
|
||||
**packages.csv**
|
||||
```
|
||||
package1,package2
|
||||
package2,package3,...
|
||||
...
|
||||
```
|
||||
'''
|
||||
conversation = gpt.Conversation()
|
||||
packages_raw = conversation.query(user_query)
|
||||
packages_csv_string = extract_content_from_result(packages_raw, 'packages.csv')
|
||||
packages = [package.split(',') for package in packages_csv_string.split('\n')]
|
||||
packages = packages[:threads]
|
||||
return packages
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# accomplished tasks:
|
||||
|
||||
# main(
|
||||
# executor_description="The executor takes a url of a website as input and classifies it as either individual or business.",
|
||||
# test_scenario='Takes https://jina.ai/ as input and returns "business". Takes https://hanxiao.io/ as input and returns "individual". ',
|
||||
# )
|
||||
|
||||
# needs to prove:
|
||||
|
||||
# ######## Level 1 task #########
|
||||
# main(
|
||||
# executor_name='MyCoolOcrExecutor',
|
||||
# executor_description="The executor takes a pdf file as input, parses it and returns the text.",
|
||||
# input_modality='pdf',
|
||||
# output_modality='text',
|
||||
# test_scenario='Takes https://www2.deloitte.com/content/dam/Deloitte/de/Documents/about-deloitte/Deloitte-Unternehmensgeschichte.pdf and returns a string that is at least 100 characters long',
|
||||
# )
|
||||
|
||||
# main(
|
||||
# executor_description="The executor takes a url of a website as input and returns the logo of the website as an image.",
|
||||
# test_scenario='Takes https://jina.ai/ as input and returns an svg image of the logo.',
|
||||
# )
|
||||
|
||||
|
||||
# # # ######## Level 1 task #########
|
||||
# main(
|
||||
# executor_description="The executor takes a pdf file as input, parses it and returns the text.",
|
||||
# input_modality='pdf',
|
||||
# output_modality='text',
|
||||
# test_scenario='Takes https://www2.deloitte.com/content/dam/Deloitte/de/Documents/about-deloitte/Deloitte-Unternehmensgeschichte.pdf and returns a string that is at least 100 characters long',
|
||||
# )
|
||||
|
||||
# ######## Level 2 task #########
|
||||
# main(
|
||||
# executor_description="OCR detector",
|
||||
# input_modality='image',
|
||||
# input_doc_field='uri',
|
||||
# output_modality='text',
|
||||
# output_doc_field='text',
|
||||
# test_in='https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png',
|
||||
# test_out='output should contain the string "Hello, world"',
|
||||
# do_validation=False
|
||||
# test_scenario='Takes https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png as input and returns a string that contains "Hello, world"',
|
||||
# )
|
||||
|
||||
# ######## Level 3 task #########
|
||||
main(
|
||||
executor_description="The executor takes an mp3 file as input and returns bpm and pitch in a json.",
|
||||
test_scenario='Takes https://cdn.pixabay.com/download/audio/2023/02/28/audio_550d815fa5.mp3 as input and returns a json with bpm and pitch',
|
||||
)
|
||||
|
||||
######### Level 4 task #########
|
||||
# main(
|
||||
# executor_description="The executor takes 3D objects in obj format as input "
|
||||
# "and outputs a 2D image projection of that object where the full object is shown. ",
|
||||
# input_modality='3d',
|
||||
# output_modality='image',
|
||||
# test_scenario='Test that 3d object from https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/wolf.obj '
|
||||
# 'is put in and out comes a 2d rendering of it',
|
||||
# )
|
||||
|
||||
# ######## Level 8 task #########
|
||||
# main(
|
||||
# executor_description="The executor takes an image as input and returns a list of bounding boxes of all animals in the image.",
|
||||
# input_modality='blob',
|
||||
# output_modality='json',
|
||||
# test_scenario='Take the image from https://thumbs.dreamstime.com/b/dog-professor-red-bow-tie-glasses-white-background-isolated-dog-professor-glasses-197036807.jpg as input and assert that the list contains at least one bounding box. ',
|
||||
# )
|
||||
#
|
||||
# # main(
|
||||
# # executor_name='MySentimentAnalyzer',
|
||||
# # executor_description="Sentiment analysis executor",
|
||||
# # input_modality='text',
|
||||
# # input_doc_field='text',
|
||||
# # output_modality='sentiment',
|
||||
# # output_doc_field='sentiment_label',
|
||||
# # test_in='This is a fantastic product! I love it!',
|
||||
# # test_out='positive',
|
||||
# # do_validation=False
|
||||
# # )
|
||||
306
micro_chain.py
@@ -1,306 +0,0 @@
|
||||
import json
|
||||
import random
|
||||
|
||||
from main import extract_content_from_result, write_config_yml, get_all_executor_files_with_content, files_to_string
|
||||
from src import gpt, jina_cloud
|
||||
from src.constants import FILE_AND_TAG_PAIRS
|
||||
from src.jina_cloud import push_executor, process_error_message
|
||||
from src.prompt_tasks import general_guidelines, executor_file_task, chain_of_thought_creation, test_executor_file_task, \
|
||||
chain_of_thought_optimization, requirements_file_task, docker_file_task, not_allowed
|
||||
from src.utils.io import recreate_folder, persist_file
|
||||
from src.utils.string_tools import print_colored
|
||||
|
||||
|
||||
def wrap_content_in_code_block(executor_content, file_name, tag):
|
||||
return f'**{file_name}**\n```{tag}\n{executor_content}\n```\n\n'
|
||||
|
||||
|
||||
def create_executor(
|
||||
executor_description,
|
||||
test_scenario,
|
||||
executor_name,
|
||||
package,
|
||||
is_chain_of_thought=False,
|
||||
):
|
||||
EXECUTOR_FOLDER_v1 = get_executor_path(package, 1)
|
||||
recreate_folder(EXECUTOR_FOLDER_v1)
|
||||
recreate_folder('flow')
|
||||
|
||||
print_colored('', '############# Executor #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ executor_file_task(executor_name, executor_description, test_scenario, package)
|
||||
+ chain_of_thought_creation()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
executor_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
executor_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() + chain_of_thought_optimization('python', 'executor.py'))
|
||||
executor_content = extract_content_from_result(executor_content_raw, 'executor.py')
|
||||
|
||||
persist_file(executor_content, EXECUTOR_FOLDER_v1 + '/executor.py')
|
||||
|
||||
print_colored('', '############# Test Executor #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ test_executor_file_task(executor_name, test_scenario)
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
test_executor_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
test_executor_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() +
|
||||
chain_of_thought_optimization('python', 'test_executor.py')
|
||||
+ "Don't add any additional tests. "
|
||||
)
|
||||
test_executor_content = extract_content_from_result(test_executor_content_raw, 'test_executor.py')
|
||||
persist_file(test_executor_content, EXECUTOR_FOLDER_v1 + '/test_executor.py')
|
||||
|
||||
print_colored('', '############# Requirements #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ requirements_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
requirements_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
requirements_content_raw = conversation.query(
|
||||
chain_of_thought_optimization('', 'requirements.txt') + "Keep the same version of jina ")
|
||||
|
||||
requirements_content = extract_content_from_result(requirements_content_raw, 'requirements.txt')
|
||||
persist_file(requirements_content, EXECUTOR_FOLDER_v1 + '/requirements.txt')
|
||||
|
||||
print_colored('', '############# Dockerfile #############', 'red')
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(executor_content, 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(test_executor_content, 'test_executor.py', 'python')
|
||||
+ wrap_content_in_code_block(requirements_content, 'requirements.txt', '')
|
||||
+ docker_file_task()
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
dockerfile_content_raw = conversation.query(user_query)
|
||||
if is_chain_of_thought:
|
||||
dockerfile_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() + chain_of_thought_optimization('dockerfile', 'Dockerfile'))
|
||||
dockerfile_content = extract_content_from_result(dockerfile_content_raw, 'Dockerfile')
|
||||
persist_file(dockerfile_content, EXECUTOR_FOLDER_v1 + '/Dockerfile')
|
||||
|
||||
write_config_yml(executor_name, EXECUTOR_FOLDER_v1)
|
||||
|
||||
|
||||
def create_playground(executor_name, executor_path, host):
|
||||
print_colored('', '############# Playground #############', 'red')
|
||||
|
||||
file_name_to_content = get_all_executor_files_with_content(executor_path)
|
||||
user_query = (
|
||||
general_guidelines()
|
||||
+ wrap_content_in_code_block(file_name_to_content['executor.py'], 'executor.py', 'python')
|
||||
+ wrap_content_in_code_block(file_name_to_content['test_executor.py'], 'test_executor.py', 'python')
|
||||
+ f'''
|
||||
Create a playground for the executor {executor_name} using streamlit.
|
||||
The executor is hosted on {host}.
|
||||
This is an example how you can connect to the executor assuming the document (d) is already defined:
|
||||
from jina import Client, Document, DocumentArray
|
||||
client = Client(host='{host}')
|
||||
response = client.post('/process', inputs=DocumentArray([d]))
|
||||
print(response[0].text) # can also be blob in case of image/audio..., this should be visualized in the streamlit app
|
||||
'''
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
conversation.query(user_query)
|
||||
playground_content_raw = conversation.query(
|
||||
f"General rules: " + not_allowed() + chain_of_thought_optimization('python', 'app.py'))
|
||||
playground_content = extract_content_from_result(playground_content_raw, 'app.py')
|
||||
persist_file(playground_content, f'{executor_path}/app.py')
|
||||
|
||||
def get_executor_path(package, version):
|
||||
package_path = '_'.join(package)
|
||||
return f'executor/{package_path}/v{version}'
|
||||
|
||||
def debug_executor(package, executor_description, test_scenario):
|
||||
MAX_DEBUGGING_ITERATIONS = 10
|
||||
error_before = ''
|
||||
for i in range(1, MAX_DEBUGGING_ITERATIONS):
|
||||
previous_executor_path = get_executor_path(package, i)
|
||||
next_executor_path = get_executor_path(package, i + 1)
|
||||
log_hubble = push_executor(previous_executor_path)
|
||||
error = process_error_message(log_hubble)
|
||||
if error:
|
||||
recreate_folder(next_executor_path)
|
||||
file_name_to_content = get_all_executor_files_with_content(previous_executor_path)
|
||||
all_files_string = files_to_string(file_name_to_content)
|
||||
user_query = (
|
||||
f"General rules: " + not_allowed()
|
||||
+ 'Here is the description of the task the executor must solve:\n'
|
||||
+ executor_description
|
||||
+ '\n\nHere is the test scenario the executor must pass:\n'
|
||||
+ test_scenario
|
||||
+ 'Here are all the files I use:\n'
|
||||
+ all_files_string
|
||||
+ (('This is an error that is already fixed before:\n'
|
||||
+ error_before) if error_before else '')
|
||||
+ '\n\nNow, I get the following error:\n'
|
||||
+ error + '\n'
|
||||
+ 'Think quickly about possible reasons. '
|
||||
'Then output the files that need change. '
|
||||
"Don't output files that don't need change. "
|
||||
"If you output a file, then write the complete file. "
|
||||
"Use the exact same syntax to wrap the code:\n"
|
||||
f"**...**\n"
|
||||
f"```...\n"
|
||||
f"...code...\n"
|
||||
f"```\n\n"
|
||||
)
|
||||
conversation = gpt.Conversation()
|
||||
returned_files_raw = conversation.query(user_query)
|
||||
for file_name, tag in FILE_AND_TAG_PAIRS:
|
||||
updated_file = extract_content_from_result(returned_files_raw, file_name)
|
||||
if updated_file:
|
||||
file_name_to_content[file_name] = updated_file
|
||||
|
||||
for file_name, content in file_name_to_content.items():
|
||||
persist_file(content, f'{next_executor_path}/{file_name}')
|
||||
error_before = error
|
||||
|
||||
else:
|
||||
break
|
||||
if i == MAX_DEBUGGING_ITERATIONS - 1:
|
||||
raise MaxDebugTimeReachedException('Could not debug the executor.')
|
||||
return get_executor_path(package, i)
|
||||
|
||||
class MaxDebugTimeReachedException(BaseException):
|
||||
pass
|
||||
|
||||
def main(
|
||||
executor_description,
|
||||
test_scenario,
|
||||
threads=3,
|
||||
):
|
||||
executor_name = f'MicroChainExecutor{random.randint(0, 1000_000)}'
|
||||
|
||||
packages = get_possible_packages(executor_description, threads)
|
||||
recreate_folder('executor')
|
||||
for package in packages:
|
||||
try:
|
||||
create_executor(executor_description, test_scenario, executor_name, package)
|
||||
# executor_name = 'MicroChainExecutor790050'
|
||||
executor_path = debug_executor(package, executor_description, test_scenario)
|
||||
# print('Executor can be built locally, now we will push it to the cloud.')
|
||||
# jina_cloud.push_executor(executor_path)
|
||||
print('Deploy a jina flow')
|
||||
host = jina_cloud.deploy_flow(executor_name, executor_path)
|
||||
print(f'Flow is deployed create the playground for {host}')
|
||||
create_playground(executor_name, executor_path, host)
|
||||
except MaxDebugTimeReachedException:
|
||||
print('Could not debug the executor.')
|
||||
continue
|
||||
print(
|
||||
'Executor name:', executor_name, '\n',
|
||||
'Executor path:', executor_path, '\n',
|
||||
'Host:', host, '\n',
|
||||
'Playground:', f'streamlit run {executor_path}/app.py', '\n',
|
||||
)
|
||||
break
|
||||
|
||||
|
||||
def get_possible_packages(executor_description, threads):
|
||||
print_colored('', '############# What package to use? #############', 'red')
|
||||
user_query = f'''
|
||||
Here is the task description of the problme you need to solve:
|
||||
"{executor_description}"
|
||||
First, write down all the subtasks you need to solve which require python packages.
|
||||
For each subtask:
|
||||
Provide a list of 1 to 3 python packages you could use to solve the subtask. Prefer modern packages.
|
||||
For each package:
|
||||
Write down some non-obvious thoughts about the challenges you might face for the task and give multiple approaches on how you handle them.
|
||||
For example, there might be some packages you must not use because they do not obay the rules:
|
||||
{not_allowed()}
|
||||
Discuss the pros and cons for all of these packages.
|
||||
Create a list of package subsets that you could use to solve the task.
|
||||
The list is sorted in a way that the most promising subset of packages is at the top.
|
||||
The maximum length of the list is 5.
|
||||
|
||||
The output must be a list of lists wrapped into ``` and starting with **packages.csv** like this:
|
||||
**packages.csv**
|
||||
```
|
||||
package1,package2
|
||||
package2,package3,...
|
||||
...
|
||||
```
|
||||
'''
|
||||
conversation = gpt.Conversation()
|
||||
packages_raw = conversation.query(user_query)
|
||||
packages_csv_string = extract_content_from_result(packages_raw, 'packages.csv')
|
||||
packages = [package.split(',') for package in packages_csv_string.split('\n')]
|
||||
packages = packages[:threads]
|
||||
return packages
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# accomplished tasks:
|
||||
|
||||
# main(
|
||||
# executor_description="The executor takes a url of a website as input and classifies it as either individual or business.",
|
||||
# test_scenario='Takes https://jina.ai/ as input and returns "business". Takes https://hanxiao.io/ as input and returns "individual". ',
|
||||
# )
|
||||
|
||||
# needs to prove:
|
||||
|
||||
# ######## Level 1 task #########
|
||||
# main(
|
||||
# executor_description="The executor takes a pdf file as input, parses it and returns the text.",
|
||||
# input_modality='pdf',
|
||||
# output_modality='text',
|
||||
# test_scenario='Takes https://www2.deloitte.com/content/dam/Deloitte/de/Documents/about-deloitte/Deloitte-Unternehmensgeschichte.pdf and returns a string that is at least 100 characters long',
|
||||
# )
|
||||
|
||||
# main(
|
||||
# executor_description="The executor takes a url of a website as input and returns the logo of the website as an image.",
|
||||
# test_scenario='Takes https://jina.ai/ as input and returns an svg image of the logo.',
|
||||
# )
|
||||
|
||||
|
||||
# # # ######## Level 1 task #########
|
||||
# main(
|
||||
# executor_description="The executor takes a pdf file as input, parses it and returns the text.",
|
||||
# input_modality='pdf',
|
||||
# output_modality='text',
|
||||
# test_scenario='Takes https://www2.deloitte.com/content/dam/Deloitte/de/Documents/about-deloitte/Deloitte-Unternehmensgeschichte.pdf and returns a string that is at least 100 characters long',
|
||||
# )
|
||||
|
||||
# ######## Level 2 task #########
|
||||
# main(
|
||||
# executor_description="OCR detector",
|
||||
# input_modality='image',
|
||||
# output_modality='text',
|
||||
# test_scenario='Takes https://miro.medium.com/v2/resize:fit:1024/0*4ty0Adbdg4dsVBo3.png as input and returns a string that contains "Hello, world"',
|
||||
# )
|
||||
|
||||
# ######## Level 3 task #########
|
||||
main(
|
||||
executor_description="The executor takes an mp3 file as input and returns bpm and pitch in a json.",
|
||||
test_scenario='Takes https://cdn.pixabay.com/download/audio/2023/02/28/audio_550d815fa5.mp3 as input and returns a json with bpm and pitch',
|
||||
)
|
||||
|
||||
######### Level 4 task #########
|
||||
# main(
|
||||
# executor_description="The executor takes 3D objects in obj format as input "
|
||||
# "and outputs a 2D image projection of that object where the full object is shown. ",
|
||||
# input_modality='3d',
|
||||
# output_modality='image',
|
||||
# test_scenario='Test that 3d object from https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/wolf.obj '
|
||||
# 'is put in and out comes a 2d rendering of it',
|
||||
# )
|
||||
|
||||
# ######## Level 8 task #########
|
||||
# main(
|
||||
# executor_description="The executor takes an image as input and returns a list of bounding boxes of all animals in the image.",
|
||||
# input_modality='blob',
|
||||
# output_modality='json',
|
||||
# test_scenario='Take the image from https://thumbs.dreamstime.com/b/dog-professor-red-bow-tie-glasses-white-background-isolated-dog-professor-glasses-197036807.jpg as input and assert that the list contains at least one bounding box. ',
|
||||
# )
|
||||
122
server.py
@@ -1,67 +1,55 @@
|
||||
# from fastapi import FastAPI
|
||||
# from fastapi.exceptions import RequestValidationError
|
||||
# from pydantic import BaseModel, HttpUrl
|
||||
# from typing import Optional, Dict
|
||||
#
|
||||
# from starlette.middleware.cors import CORSMiddleware
|
||||
# from starlette.requests import Request
|
||||
# from starlette.responses import JSONResponse
|
||||
#
|
||||
# from main import main
|
||||
#
|
||||
# app = FastAPI()
|
||||
#
|
||||
# # Define the request model
|
||||
# class CreateRequest(BaseModel):
|
||||
# executor_name: str
|
||||
# executor_description: str
|
||||
# input_modality: str
|
||||
# input_doc_field: str
|
||||
# output_modality: str
|
||||
# output_doc_field: str
|
||||
# test_in: str
|
||||
# test_out: str
|
||||
#
|
||||
# # Define the response model
|
||||
# class CreateResponse(BaseModel):
|
||||
# result: Dict[str, str]
|
||||
# success: bool
|
||||
# message: Optional[str]
|
||||
#
|
||||
# @app.post("/create", response_model=CreateResponse)
|
||||
# def create_endpoint(request: CreateRequest):
|
||||
#
|
||||
# result = main(
|
||||
# executor_name=request.executor_name,
|
||||
# executor_description=request.executor_description,
|
||||
# input_modality=request.input_modality,
|
||||
# input_doc_field=request.input_doc_field,
|
||||
# output_modality=request.output_modality,
|
||||
# output_doc_field=request.output_doc_field,
|
||||
# test_in=request.test_in,
|
||||
# test_out=request.test_out,
|
||||
# do_validation=False
|
||||
# )
|
||||
# return CreateResponse(result=result, success=True, message=None)
|
||||
#
|
||||
#
|
||||
# app.add_middleware(
|
||||
# CORSMiddleware,
|
||||
# allow_origins=["*"],
|
||||
# allow_credentials=True,
|
||||
# allow_methods=["*"],
|
||||
# allow_headers=["*"],
|
||||
# )
|
||||
#
|
||||
# # Add a custom exception handler for RequestValidationError
|
||||
# @app.exception_handler(RequestValidationError)
|
||||
# def validation_exception_handler(request: Request, exc: RequestValidationError):
|
||||
# return JSONResponse(
|
||||
# status_code=422,
|
||||
# content={"detail": exc.errors()},
|
||||
# )
|
||||
#
|
||||
#
|
||||
# if __name__ == "__main__":
|
||||
# import uvicorn
|
||||
# uvicorn.run("server:app", host="0.0.0.0", port=8000, log_level="info")
|
||||
from fastapi import FastAPI
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from jina import Flow
|
||||
from pydantic import BaseModel, HttpUrl
|
||||
from typing import Optional, Dict
|
||||
|
||||
from starlette.middleware.cors import CORSMiddleware
|
||||
from starlette.requests import Request
|
||||
from starlette.responses import JSONResponse
|
||||
Flow.plot()
|
||||
from main import main
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
# Define the request model
|
||||
class CreateRequest(BaseModel):
|
||||
test_scenario: str
|
||||
executor_description: str
|
||||
|
||||
# Define the response model
|
||||
class CreateResponse(BaseModel):
|
||||
result: Dict[str, str]
|
||||
success: bool
|
||||
message: Optional[str]
|
||||
|
||||
@app.post("/create", response_model=CreateResponse)
|
||||
def create_endpoint(request: CreateRequest):
|
||||
|
||||
result = main(
|
||||
executor_description=request.executor_description,
|
||||
test_scenario=request.test_scenario,
|
||||
)
|
||||
return CreateResponse(result=result, success=True, message=None)
|
||||
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
# Add a custom exception handler for RequestValidationError
|
||||
@app.exception_handler(RequestValidationError)
|
||||
def validation_exception_handler(request: Request, exc: RequestValidationError):
|
||||
return JSONResponse(
|
||||
status_code=422,
|
||||
content={"detail": exc.errors()},
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run("server:app", host="0.0.0.0", port=8000, log_level="info")
|
||||
|
||||
@@ -15,8 +15,10 @@ total_chars_prompt = 0
|
||||
total_chars_generation = 0
|
||||
|
||||
class Conversation:
|
||||
def __init__(self):
|
||||
self.prompt_list = [('system', system_base_definition)]
|
||||
def __init__(self, prompt_list: List[Tuple[str, str]] = None):
|
||||
if prompt_list is None:
|
||||
prompt_list = [('system', system_base_definition)]
|
||||
self.prompt_list = prompt_list
|
||||
print_colored('system', system_base_definition, 'magenta')
|
||||
|
||||
def query(self, prompt: str):
|
||||
|
||||