from __future__ import annotations import datetime import logging import os import tiktoken import openai import requests import json import httpx import tempfile from datetime import date from calendar import monthrange from tenacity import retry, stop_after_attempt, wait_fixed, retry_if_exception_type from utils import is_direct_result from plugin_manager import PluginManager # Models can be found here: https://platform.openai.com/docs/models/overview GPT_3_MODELS = ("gpt-3.5-turbo", "gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613") GPT_3_16K_MODELS = ("gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613") GPT_4_MODELS = ("gpt-4", "gpt-4-0314", "gpt-4-0613") GPT_4_32K_MODELS = ("gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-0613") GPT_ALL_MODELS = GPT_3_MODELS + GPT_3_16K_MODELS + GPT_4_MODELS + GPT_4_32K_MODELS def default_max_tokens(model: str) -> int: """ Gets the default number of max tokens for the given model. :param model: The model name :return: The default number of max tokens """ base = 1200 if model in GPT_3_MODELS: return base elif model in GPT_4_MODELS: return base * 2 elif model in GPT_3_16K_MODELS: return base * 4 elif model in GPT_4_32K_MODELS: return base * 8 def are_functions_available(model: str) -> bool: """ Whether the given model supports functions """ # Deprecated models if model in ("gpt-3.5-turbo-0301", "gpt-4-0314", "gpt-4-32k-0314"): return False # Stable models will be updated to support functions on June 27, 2023 if model in ("gpt-3.5-turbo", "gpt-4", "gpt-4-32k"): return datetime.date.today() > datetime.date(2023, 6, 27) return True # Load translations parent_dir_path = os.path.join(os.path.dirname(__file__), os.pardir) translations_file_path = os.path.join(parent_dir_path, 'translations.json') with open(translations_file_path, 'r', encoding='utf-8') as f: translations = json.load(f) def localized_text(key, bot_language): """ Return translated text for a key in specified bot_language. Keys and translations can be found in the translations.json. """ try: return translations[bot_language][key] except KeyError: logging.warning(f"No translation available for bot_language code '{bot_language}' and key '{key}'") # Fallback to English if the translation is not available if key in translations['en']: return translations['en'][key] else: logging.warning(f"No english definition found for key '{key}' in translations.json") # return key as text return key class OpenAIHelper: """ ChatGPT helper class. """ def __init__(self, config: dict, plugin_manager: PluginManager): """ Initializes the OpenAI helper class with the given configuration. :param config: A dictionary containing the GPT configuration :param plugin_manager: The plugin manager """ http_client = httpx.AsyncClient(proxies=config['proxy']) if 'proxy' in config else None self.client = openai.AsyncOpenAI(api_key=config['api_key'], http_client=http_client) self.config = config self.plugin_manager = plugin_manager self.conversations: dict[int: list] = {} # {chat_id: history} self.last_updated: dict[int: datetime] = {} # {chat_id: last_update_timestamp} def get_conversation_stats(self, chat_id: int) -> tuple[int, int]: """ Gets the number of messages and tokens used in the conversation. :param chat_id: The chat ID :return: A tuple containing the number of messages and tokens used """ if chat_id not in self.conversations: self.reset_chat_history(chat_id) return len(self.conversations[chat_id]), self.__count_tokens(self.conversations[chat_id]) async def get_chat_response(self, chat_id: int, query: str) -> tuple[str, str]: """ Gets a full response from the GPT model. :param chat_id: The chat ID :param query: The query to send to the model :return: The answer from the model and the number of tokens used """ plugins_used = () response = await self.__common_get_chat_response(chat_id, query) if self.config['enable_functions']: response, plugins_used = await self.__handle_function_call(chat_id, response) if is_direct_result(response): return response, '0' answer = '' if len(response.choices) > 1 and self.config['n_choices'] > 1: for index, choice in enumerate(response.choices): content = choice.message.content.strip() if index == 0: self.__add_to_history(chat_id, role="assistant", content=content) answer += f'{index + 1}\u20e3\n' answer += content answer += '\n\n' else: answer = response.choices[0].message.content.strip() self.__add_to_history(chat_id, role="assistant", content=answer) bot_language = self.config['bot_language'] show_plugins_used = len(plugins_used) > 0 and self.config['show_plugins_used'] plugin_names = tuple(self.plugin_manager.get_plugin_source_name(plugin) for plugin in plugins_used) if self.config['show_usage']: answer += "\n\n---\n" \ f"💰 {str(response.usage.total_tokens)} {localized_text('stats_tokens', bot_language)}" \ f" ({str(response.usage.prompt_tokens)} {localized_text('prompt', bot_language)}," \ f" {str(response.usage.completion_tokens)} {localized_text('completion', bot_language)})" if show_plugins_used: answer += f"\n🔌 {', '.join(plugin_names)}" elif show_plugins_used: answer += f"\n\n---\n🔌 {', '.join(plugin_names)}" return answer, response.usage.total_tokens async def get_chat_response_stream(self, chat_id: int, query: str): """ Stream response from the GPT model. :param chat_id: The chat ID :param query: The query to send to the model :return: The answer from the model and the number of tokens used, or 'not_finished' """ plugins_used = () response = await self.__common_get_chat_response(chat_id, query, stream=True) if self.config['enable_functions']: response, plugins_used = await self.__handle_function_call(chat_id, response, stream=True) if is_direct_result(response): yield response, '0' return answer = '' async for chunk in response: if len(chunk.choices) == 0: continue delta = chunk.choices[0].delta if delta.content: answer += delta.content yield answer, 'not_finished' answer = answer.strip() self.__add_to_history(chat_id, role="assistant", content=answer) tokens_used = str(self.__count_tokens(self.conversations[chat_id])) show_plugins_used = len(plugins_used) > 0 and self.config['show_plugins_used'] plugin_names = tuple(self.plugin_manager.get_plugin_source_name(plugin) for plugin in plugins_used) if self.config['show_usage']: answer += f"\n\n---\n💰 {tokens_used} {localized_text('stats_tokens', self.config['bot_language'])}" if show_plugins_used: answer += f"\n🔌 {', '.join(plugin_names)}" elif show_plugins_used: answer += f"\n\n---\n🔌 {', '.join(plugin_names)}" yield answer, tokens_used @retry( reraise=True, retry=retry_if_exception_type(openai.RateLimitError), wait=wait_fixed(20), stop=stop_after_attempt(3) ) async def __common_get_chat_response(self, chat_id: int, query: str, stream=False): """ Request a response from the GPT model. :param chat_id: The chat ID :param query: The query to send to the model :return: The answer from the model and the number of tokens used """ bot_language = self.config['bot_language'] try: if chat_id not in self.conversations or self.__max_age_reached(chat_id): self.reset_chat_history(chat_id) self.last_updated[chat_id] = datetime.datetime.now() self.__add_to_history(chat_id, role="user", content=query) # Summarize the chat history if it's too long to avoid excessive token usage token_count = self.__count_tokens(self.conversations[chat_id]) exceeded_max_tokens = token_count + self.config['max_tokens'] > self.__max_model_tokens() exceeded_max_history_size = len(self.conversations[chat_id]) > self.config['max_history_size'] if exceeded_max_tokens or exceeded_max_history_size: logging.info(f'Chat history for chat ID {chat_id} is too long. Summarising...') try: summary = await self.__summarise(self.conversations[chat_id][:-1]) logging.debug(f'Summary: {summary}') self.reset_chat_history(chat_id, self.conversations[chat_id][0]['content']) self.__add_to_history(chat_id, role="assistant", content=summary) self.__add_to_history(chat_id, role="user", content=query) except Exception as e: logging.warning(f'Error while summarising chat history: {str(e)}. Popping elements instead...') self.conversations[chat_id] = self.conversations[chat_id][-self.config['max_history_size']:] common_args = { 'model': self.config['model'], 'messages': self.conversations[chat_id], 'temperature': self.config['temperature'], 'n': self.config['n_choices'], 'max_tokens': self.config['max_tokens'], 'presence_penalty': self.config['presence_penalty'], 'frequency_penalty': self.config['frequency_penalty'], 'stream': stream } if self.config['enable_functions']: functions = self.plugin_manager.get_functions_specs() if len(functions) > 0: common_args['functions'] = self.plugin_manager.get_functions_specs() common_args['function_call'] = 'auto' return await self.client.chat.completions.create(**common_args) except openai.RateLimitError as e: raise e except openai.BadRequestError as e: raise Exception(f"⚠️ _{localized_text('openai_invalid', bot_language)}._ ⚠️\n{str(e)}") from e except Exception as e: raise Exception(f"⚠️ _{localized_text('error', bot_language)}._ ⚠️\n{str(e)}") from e async def __handle_function_call(self, chat_id, response, stream=False, times=0, plugins_used=()): function_name = '' arguments = '' if stream: async for item in response: if len(item.choices) > 0: first_choice = item.choices[0] if first_choice.delta and first_choice.delta.function_call: if first_choice.delta.function_call.name: function_name += first_choice.delta.function_call.name if first_choice.delta.function_call.arguments: arguments += first_choice.delta.function_call.arguments elif first_choice.finish_reason and first_choice.finish_reason == 'function_call': break else: return response, plugins_used else: return response, plugins_used else: if len(response.choices) > 0: first_choice = response.choices[0] if first_choice.message.function_call: if first_choice.message.function_call.name: function_name += first_choice.message.function_call.name if first_choice.message.function_call.arguments: arguments += first_choice.message.function_call.arguments else: return response, plugins_used else: return response, plugins_used logging.info(f'Calling function {function_name} with arguments {arguments}') function_response = await self.plugin_manager.call_function(function_name, arguments) if function_name not in plugins_used: plugins_used += (function_name,) if is_direct_result(function_response): self.__add_function_call_to_history(chat_id=chat_id, function_name=function_name, content=json.dumps({'result': 'Done, the content has been sent' 'to the user.'})) return function_response, plugins_used self.__add_function_call_to_history(chat_id=chat_id, function_name=function_name, content=function_response) response = await self.client.chat.completions.create( model=self.config['model'], messages=self.conversations[chat_id], functions=self.plugin_manager.get_functions_specs(), function_call='auto' if times < self.config['functions_max_consecutive_calls'] else 'none', stream=stream ) return await self.__handle_function_call(chat_id, response, stream, times + 1, plugins_used) async def generate_image(self, prompt: str) -> tuple[str, str]: """ Generates an image from the given prompt using DALL·E model. :param prompt: The prompt to send to the model :return: The image URL and the image size """ bot_language = self.config['bot_language'] try: response = await self.client.images.generate( prompt=prompt, n=1, size=self.config['image_size'] ) if len(response.data) == 0: logging.error(f'No response from GPT: {str(response)}') raise Exception( f"⚠️ _{localized_text('error', bot_language)}._ " f"⚠️\n{localized_text('try_again', bot_language)}." ) return response.data[0].url, self.config['image_size'] except Exception as e: raise Exception(f"⚠️ _{localized_text('error', bot_language)}._ ⚠️\n{str(e)}") from e async def generate_speech(self, text: str) -> tuple[any, int]: """ Generates an audio from the given text using TTS model. :param prompt: The text to send to the model :return: The audio in bytes and the text size """ bot_language = self.config['bot_language'] try: response = await self.client.audio.speech.create( model=self.config['tts_model'], voice=self.config['tts_voice'], input=text, response_format='opus' ) temp_file = tempfile.NamedTemporaryFile() response.stream_to_file(temp_file.name) return temp_file, len(text) except Exception as e: raise Exception(f"⚠️ _{localized_text('error', bot_language)}._ ⚠️\n{str(e)}") from e async def transcribe(self, filename): """ Transcribes the audio file using the Whisper model. """ try: with open(filename, "rb") as audio: prompt_text = self.config['whisper_prompt'] result = await self.client.audio.transcriptions.create(model="whisper-1", file=audio, prompt=prompt_text) return result.text except Exception as e: logging.exception(e) raise Exception(f"⚠️ _{localized_text('error', self.config['bot_language'])}._ ⚠️\n{str(e)}") from e def reset_chat_history(self, chat_id, content=''): """ Resets the conversation history. """ if content == '': content = self.config['assistant_prompt'] self.conversations[chat_id] = [{"role": "system", "content": content}] def __max_age_reached(self, chat_id) -> bool: """ Checks if the maximum conversation age has been reached. :param chat_id: The chat ID :return: A boolean indicating whether the maximum conversation age has been reached """ if chat_id not in self.last_updated: return False last_updated = self.last_updated[chat_id] now = datetime.datetime.now() max_age_minutes = self.config['max_conversation_age_minutes'] return last_updated < now - datetime.timedelta(minutes=max_age_minutes) def __add_function_call_to_history(self, chat_id, function_name, content): """ Adds a function call to the conversation history """ self.conversations[chat_id].append({"role": "function", "name": function_name, "content": content}) def __add_to_history(self, chat_id, role, content): """ Adds a message to the conversation history. :param chat_id: The chat ID :param role: The role of the message sender :param content: The message content """ self.conversations[chat_id].append({"role": role, "content": content}) async def __summarise(self, conversation) -> str: """ Summarises the conversation history. :param conversation: The conversation history :return: The summary """ messages = [ {"role": "assistant", "content": "Summarize this conversation in 700 characters or less"}, {"role": "user", "content": str(conversation)} ] response = await self.client.chat.completions.create( model=self.config['model'], messages=messages, temperature=0.4 ) return response.choices[0]['message']['content'] def __max_model_tokens(self): base = 4096 if self.config['model'] in GPT_3_MODELS: return base if self.config['model'] in GPT_3_16K_MODELS: return base * 4 if self.config['model'] in GPT_4_MODELS: return base * 2 if self.config['model'] in GPT_4_32K_MODELS: return base * 8 raise NotImplementedError( f"Max tokens for model {self.config['model']} is not implemented yet." ) # https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb def __count_tokens(self, messages) -> int: """ Counts the number of tokens required to send the given messages. :param messages: the messages to send :return: the number of tokens required """ model = self.config['model'] try: encoding = tiktoken.encoding_for_model(model) except KeyError: encoding = tiktoken.get_encoding("gpt-3.5-turbo") if model in GPT_3_MODELS + GPT_3_16K_MODELS: tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif model in GPT_4_MODELS + GPT_4_32K_MODELS: tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}.""") num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens # No longer works as of July 21st 2023, as OpenAI has removed the billing API # def get_billing_current_month(self): # """Gets billed usage for current month from OpenAI API. # # :return: dollar amount of usage this month # """ # headers = { # "Authorization": f"Bearer {openai.api_key}" # } # # calculate first and last day of current month # today = date.today() # first_day = date(today.year, today.month, 1) # _, last_day_of_month = monthrange(today.year, today.month) # last_day = date(today.year, today.month, last_day_of_month) # params = { # "start_date": first_day, # "end_date": last_day # } # response = requests.get("https://api.openai.com/dashboard/billing/usage", headers=headers, params=params) # billing_data = json.loads(response.text) # usage_month = billing_data["total_usage"] / 100 # convert cent amount to dollars # return usage_month