Files
SkrOYC b7a4378c08 Update call_llm.py with beginner friendly AI Studio key support
Adding a whole client definition for those using AI Studio
2025-04-07 19:32:55 -04:00

126 lines
3.9 KiB
Python

from google import genai
import os
import logging
import json
from datetime import datetime
# Configure logging
log_directory = os.getenv("LOG_DIR", "logs")
os.makedirs(log_directory, exist_ok=True)
log_file = os.path.join(log_directory, f"llm_calls_{datetime.now().strftime('%Y%m%d')}.log")
# Set up logger
logger = logging.getLogger("llm_logger")
logger.setLevel(logging.INFO)
logger.propagate = False # Prevent propagation to root logger
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(file_handler)
# Simple cache configuration
cache_file = "llm_cache.json"
# By default, we Google Gemini 2.5 pro, as it shows great performance for code understanding
def call_llm(prompt: str, use_cache: bool = True) -> str:
# Log the prompt
logger.info(f"PROMPT: {prompt}")
# Check cache if enabled
if use_cache:
# Load cache from disk
cache = {}
if os.path.exists(cache_file):
try:
with open(cache_file, 'r') as f:
cache = json.load(f)
except:
logger.warning(f"Failed to load cache, starting with empty cache")
# Return from cache if exists
if prompt in cache:
logger.info(f"RESPONSE: {cache[prompt]}")
return cache[prompt]
# Call the LLM if not in cache or cache disabled
client = genai.Client(
vertexai=True,
# TODO: change to your own project id and location
project=os.getenv("GEMINI_PROJECT_ID", "your-project-id"),
location=os.getenv("GEMINI_LOCATION", "us-central1")
)
# You can comment the previous line and use the AI Studio key instead:
# client = genai.Client(
# api_key=os.getenv("GEMINI_API_KEY", "your-api_key"),
# )
model = os.getenv("GEMINI_MODEL", "gemini-2.5-pro-exp-03-25")
response = client.models.generate_content(
model=model,
contents=[prompt]
)
response_text = response.text
# Log the response
logger.info(f"RESPONSE: {response_text}")
# Update cache if enabled
if use_cache:
# Load cache again to avoid overwrites
cache = {}
if os.path.exists(cache_file):
try:
with open(cache_file, 'r') as f:
cache = json.load(f)
except:
pass
# Add to cache and save
cache[prompt] = response_text
try:
with open(cache_file, 'w') as f:
json.dump(cache, f)
except Exception as e:
logger.error(f"Failed to save cache: {e}")
return response_text
# # Use Anthropic Claude 3.7 Sonnet Extended Thinking
# def call_llm(prompt, use_cache: bool = True):
# from anthropic import Anthropic
# client = Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY", "your-api-key"))
# response = client.messages.create(
# model="claude-3-7-sonnet-20250219",
# max_tokens=21000,
# thinking={
# "type": "enabled",
# "budget_tokens": 20000
# },
# messages=[
# {"role": "user", "content": prompt}
# ]
# )
# return response.content[1].text
# # Use OpenAI o1
# def call_llm(prompt, use_cache: bool = True):
# from openai import OpenAI
# client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", "your-api-key"))
# r = client.chat.completions.create(
# model="o1",
# messages=[{"role": "user", "content": prompt}],
# response_format={
# "type": "text"
# },
# reasoning_effort="medium",
# store=False
# )
# return r.choices[0].message.content
if __name__ == "__main__":
test_prompt = "Hello, how are you?"
# First call - should hit the API
print("Making call...")
response1 = call_llm(test_prompt, use_cache=False)
print(f"Response: {response1}")