mirror of
https://github.com/aljazceru/Tutorial-Codebase-Knowledge.git
synced 2025-12-18 06:54:24 +01:00
732 lines
37 KiB
Python
732 lines
37 KiB
Python
import os
|
|
import yaml
|
|
from pocketflow import Node, BatchNode
|
|
from utils.crawl_github_files import crawl_github_files
|
|
from utils.call_llm import call_llm
|
|
from utils.crawl_local_files import crawl_local_files
|
|
|
|
# Helper to get content for specific file indices
|
|
def get_content_for_indices(files_data, indices):
|
|
content_map = {}
|
|
for i in indices:
|
|
if 0 <= i < len(files_data):
|
|
path, content = files_data[i]
|
|
content_map[f"{i} # {path}"] = content # Use index + path as key for context
|
|
return content_map
|
|
|
|
class FetchRepo(Node):
|
|
def prep(self, shared):
|
|
repo_url = shared.get("repo_url")
|
|
local_dir = shared.get("local_dir")
|
|
project_name = shared.get("project_name")
|
|
|
|
if not project_name:
|
|
# Basic name derivation from URL or directory
|
|
if repo_url:
|
|
project_name = repo_url.split('/')[-1].replace('.git', '')
|
|
else:
|
|
project_name = os.path.basename(os.path.abspath(local_dir))
|
|
shared["project_name"] = project_name
|
|
|
|
# Get file patterns directly from shared
|
|
include_patterns = shared["include_patterns"]
|
|
exclude_patterns = shared["exclude_patterns"]
|
|
max_file_size = shared["max_file_size"]
|
|
|
|
return {
|
|
"repo_url": repo_url,
|
|
"local_dir": local_dir,
|
|
"token": shared.get("github_token"),
|
|
"include_patterns": include_patterns,
|
|
"exclude_patterns": exclude_patterns,
|
|
"max_file_size": max_file_size,
|
|
"use_relative_paths": True
|
|
}
|
|
|
|
def exec(self, prep_res):
|
|
if prep_res["repo_url"]:
|
|
print(f"Crawling repository: {prep_res['repo_url']}...")
|
|
result = crawl_github_files(
|
|
repo_url=prep_res["repo_url"],
|
|
token=prep_res["token"],
|
|
include_patterns=prep_res["include_patterns"],
|
|
exclude_patterns=prep_res["exclude_patterns"],
|
|
max_file_size=prep_res["max_file_size"],
|
|
use_relative_paths=prep_res["use_relative_paths"]
|
|
)
|
|
else:
|
|
print(f"Crawling directory: {prep_res['local_dir']}...")
|
|
result = crawl_local_files(
|
|
directory=prep_res["local_dir"],
|
|
include_patterns=prep_res["include_patterns"],
|
|
exclude_patterns=prep_res["exclude_patterns"],
|
|
max_file_size=prep_res["max_file_size"],
|
|
use_relative_paths=prep_res["use_relative_paths"]
|
|
)
|
|
|
|
# Convert dict to list of tuples: [(path, content), ...]
|
|
files_list = list(result.get("files", {}).items())
|
|
if len(files_list) == 0:
|
|
raise(ValueError("Failed to fetch files"))
|
|
print(f"Fetched {len(files_list)} files.")
|
|
return files_list
|
|
|
|
def post(self, shared, prep_res, exec_res):
|
|
shared["files"] = exec_res # List of (path, content) tuples
|
|
|
|
class IdentifyAbstractions(Node):
|
|
def prep(self, shared):
|
|
files_data = shared["files"]
|
|
project_name = shared["project_name"] # Get project name
|
|
language = shared.get("language", "english") # Get language
|
|
|
|
# Helper to create context from files, respecting limits (basic example)
|
|
def create_llm_context(files_data):
|
|
context = ""
|
|
file_info = [] # Store tuples of (index, path)
|
|
for i, (path, content) in enumerate(files_data):
|
|
entry = f"--- File Index {i}: {path} ---\n{content}\n\n"
|
|
context += entry
|
|
file_info.append((i, path))
|
|
|
|
return context, file_info # file_info is list of (index, path)
|
|
|
|
context, file_info = create_llm_context(files_data)
|
|
# Format file info for the prompt (comment is just a hint for LLM)
|
|
file_listing_for_prompt = "\n".join([f"- {idx} # {path}" for idx, path in file_info])
|
|
return context, file_listing_for_prompt, len(files_data), project_name, language # Return language
|
|
|
|
def exec(self, prep_res):
|
|
context, file_listing_for_prompt, file_count, project_name, language = prep_res # Unpack project name and language
|
|
print(f"Identifying abstractions using LLM...")
|
|
|
|
# Add language instruction and hints only if not English
|
|
language_instruction = ""
|
|
name_lang_hint = ""
|
|
desc_lang_hint = ""
|
|
if language.lower() != "english":
|
|
language_instruction = f"IMPORTANT: Generate the `name` and `description` for each abstraction in **{language.capitalize()}** language. Do NOT use English for these fields.\n\n"
|
|
# Keep specific hints here as name/description are primary targets
|
|
name_lang_hint = f" (value in {language.capitalize()})"
|
|
desc_lang_hint = f" (value in {language.capitalize()})"
|
|
|
|
prompt = f"""
|
|
For the project `{project_name}`:
|
|
|
|
Codebase Context:
|
|
{context}
|
|
|
|
{language_instruction}Analyze the codebase context.
|
|
Identify the top 5-10 core most important abstractions to help those new to the codebase.
|
|
|
|
For each abstraction, provide:
|
|
1. A concise `name`{name_lang_hint}.
|
|
2. A beginner-friendly `description` explaining what it is with a simple analogy, in around 100 words{desc_lang_hint}.
|
|
3. A list of relevant `file_indices` (integers) using the format `idx # path/comment`.
|
|
|
|
List of file indices and paths present in the context:
|
|
{file_listing_for_prompt}
|
|
|
|
Format the output as a YAML list of dictionaries:
|
|
|
|
```yaml
|
|
- name: |
|
|
Query Processing{name_lang_hint}
|
|
description: |
|
|
Explains what the abstraction does.
|
|
It's like a central dispatcher routing requests.{desc_lang_hint}
|
|
file_indices:
|
|
- 0 # path/to/file1.py
|
|
- 3 # path/to/related.py
|
|
- name: |
|
|
Query Optimization{name_lang_hint}
|
|
description: |
|
|
Another core concept, similar to a blueprint for objects.{desc_lang_hint}
|
|
file_indices:
|
|
- 5 # path/to/another.js
|
|
# ... up to 10 abstractions
|
|
```"""
|
|
response = call_llm(prompt)
|
|
|
|
# --- Validation ---
|
|
yaml_str = response.strip().split("```yaml")[1].split("```")[0].strip()
|
|
abstractions = yaml.safe_load(yaml_str)
|
|
|
|
if not isinstance(abstractions, list):
|
|
raise ValueError("LLM Output is not a list")
|
|
|
|
validated_abstractions = []
|
|
for item in abstractions:
|
|
if not isinstance(item, dict) or not all(k in item for k in ["name", "description", "file_indices"]):
|
|
raise ValueError(f"Missing keys in abstraction item: {item}")
|
|
if not isinstance(item["name"], str):
|
|
raise ValueError(f"Name is not a string in item: {item}")
|
|
if not isinstance(item["description"], str):
|
|
raise ValueError(f"Description is not a string in item: {item}")
|
|
if not isinstance(item["file_indices"], list):
|
|
raise ValueError(f"file_indices is not a list in item: {item}")
|
|
|
|
# Validate indices
|
|
validated_indices = []
|
|
for idx_entry in item["file_indices"]:
|
|
try:
|
|
if isinstance(idx_entry, int):
|
|
idx = idx_entry
|
|
elif isinstance(idx_entry, str) and '#' in idx_entry:
|
|
idx = int(idx_entry.split('#')[0].strip())
|
|
else:
|
|
idx = int(str(idx_entry).strip())
|
|
|
|
if not (0 <= idx < file_count):
|
|
raise ValueError(f"Invalid file index {idx} found in item {item['name']}. Max index is {file_count - 1}.")
|
|
validated_indices.append(idx)
|
|
except (ValueError, TypeError):
|
|
raise ValueError(f"Could not parse index from entry: {idx_entry} in item {item['name']}")
|
|
|
|
item["files"] = sorted(list(set(validated_indices)))
|
|
# Store only the required fields
|
|
validated_abstractions.append({
|
|
"name": item["name"], # Potentially translated name
|
|
"description": item["description"], # Potentially translated description
|
|
"files": item["files"]
|
|
})
|
|
|
|
print(f"Identified {len(validated_abstractions)} abstractions.")
|
|
return validated_abstractions
|
|
|
|
def post(self, shared, prep_res, exec_res):
|
|
shared["abstractions"] = exec_res # List of {"name": str, "description": str, "files": [int]}
|
|
|
|
class AnalyzeRelationships(Node):
|
|
def prep(self, shared):
|
|
abstractions = shared["abstractions"] # Now contains 'files' list of indices, name/description potentially translated
|
|
files_data = shared["files"]
|
|
project_name = shared["project_name"] # Get project name
|
|
language = shared.get("language", "english") # Get language
|
|
|
|
# Create context with abstraction names, indices, descriptions, and relevant file snippets
|
|
context = "Identified Abstractions:\n"
|
|
all_relevant_indices = set()
|
|
abstraction_info_for_prompt = []
|
|
for i, abstr in enumerate(abstractions):
|
|
# Use 'files' which contains indices directly
|
|
file_indices_str = ", ".join(map(str, abstr['files']))
|
|
# Abstraction name and description might be translated already
|
|
info_line = f"- Index {i}: {abstr['name']} (Relevant file indices: [{file_indices_str}])\n Description: {abstr['description']}"
|
|
context += info_line + "\n"
|
|
abstraction_info_for_prompt.append(f"{i} # {abstr['name']}") # Use potentially translated name here too
|
|
all_relevant_indices.update(abstr['files'])
|
|
|
|
context += "\nRelevant File Snippets (Referenced by Index and Path):\n"
|
|
# Get content for relevant files using helper
|
|
relevant_files_content_map = get_content_for_indices(
|
|
files_data,
|
|
sorted(list(all_relevant_indices))
|
|
)
|
|
# Format file content for context
|
|
file_context_str = "\n\n".join(
|
|
f"--- File: {idx_path} ---\n{content}"
|
|
for idx_path, content in relevant_files_content_map.items()
|
|
)
|
|
context += file_context_str
|
|
|
|
return context, "\n".join(abstraction_info_for_prompt), project_name, language # Return language
|
|
|
|
def exec(self, prep_res):
|
|
context, abstraction_listing, project_name, language = prep_res # Unpack project name and language
|
|
print(f"Analyzing relationships using LLM...")
|
|
|
|
# Add language instruction and hints only if not English
|
|
language_instruction = ""
|
|
lang_hint = ""
|
|
list_lang_note = ""
|
|
if language.lower() != "english":
|
|
language_instruction = f"IMPORTANT: Generate the `summary` and relationship `label` fields in **{language.capitalize()}** language. Do NOT use English for these fields.\n\n"
|
|
lang_hint = f" (in {language.capitalize()})"
|
|
list_lang_note = f" (Names might be in {language.capitalize()})" # Note for the input list
|
|
|
|
prompt = f"""
|
|
Based on the following abstractions and relevant code snippets from the project `{project_name}`:
|
|
|
|
List of Abstraction Indices and Names{list_lang_note}:
|
|
{abstraction_listing}
|
|
|
|
Context (Abstractions, Descriptions, Code):
|
|
{context}
|
|
|
|
{language_instruction}Please provide:
|
|
1. A high-level `summary` of the project's main purpose and functionality in a few beginner-friendly sentences{lang_hint}. Use markdown formatting with **bold** and *italic* text to highlight important concepts.
|
|
2. A list (`relationships`) describing the key interactions between these abstractions. For each relationship, specify:
|
|
- `from_abstraction`: Index of the source abstraction (e.g., `0 # AbstractionName1`)
|
|
- `to_abstraction`: Index of the target abstraction (e.g., `1 # AbstractionName2`)
|
|
- `label`: A brief label for the interaction **in just a few words**{lang_hint} (e.g., "Manages", "Inherits", "Uses").
|
|
Ideally the relationship should be backed by one abstraction calling or passing parameters to another.
|
|
Simplify the relationship and exclude those non-important ones.
|
|
|
|
IMPORTANT: Make sure EVERY abstraction is involved in at least ONE relationship (either as source or target). Each abstraction index must appear at least once across all relationships.
|
|
|
|
Format the output as YAML:
|
|
|
|
```yaml
|
|
summary: |
|
|
A brief, simple explanation of the project{lang_hint}.
|
|
Can span multiple lines with **bold** and *italic* for emphasis.
|
|
relationships:
|
|
- from_abstraction: 0 # AbstractionName1
|
|
to_abstraction: 1 # AbstractionName2
|
|
label: "Manages"{lang_hint}
|
|
- from_abstraction: 2 # AbstractionName3
|
|
to_abstraction: 0 # AbstractionName1
|
|
label: "Provides config"{lang_hint}
|
|
# ... other relationships
|
|
```
|
|
|
|
Now, provide the YAML output:
|
|
"""
|
|
response = call_llm(prompt)
|
|
|
|
# --- Validation ---
|
|
yaml_str = response.strip().split("```yaml")[1].split("```")[0].strip()
|
|
relationships_data = yaml.safe_load(yaml_str)
|
|
|
|
if not isinstance(relationships_data, dict) or not all(k in relationships_data for k in ["summary", "relationships"]):
|
|
raise ValueError("LLM output is not a dict or missing keys ('summary', 'relationships')")
|
|
if not isinstance(relationships_data["summary"], str):
|
|
raise ValueError("summary is not a string")
|
|
if not isinstance(relationships_data["relationships"], list):
|
|
raise ValueError("relationships is not a list")
|
|
|
|
# Validate relationships structure
|
|
validated_relationships = []
|
|
num_abstractions = len(abstraction_listing.split('\n'))
|
|
for rel in relationships_data["relationships"]:
|
|
# Check for 'label' key
|
|
if not isinstance(rel, dict) or not all(k in rel for k in ["from_abstraction", "to_abstraction", "label"]):
|
|
raise ValueError(f"Missing keys (expected from_abstraction, to_abstraction, label) in relationship item: {rel}")
|
|
# Validate 'label' is a string
|
|
if not isinstance(rel["label"], str):
|
|
raise ValueError(f"Relationship label is not a string: {rel}")
|
|
|
|
# Validate indices
|
|
try:
|
|
from_idx = int(str(rel["from_abstraction"]).split('#')[0].strip())
|
|
to_idx = int(str(rel["to_abstraction"]).split('#')[0].strip())
|
|
if not (0 <= from_idx < num_abstractions and 0 <= to_idx < num_abstractions):
|
|
raise ValueError(f"Invalid index in relationship: from={from_idx}, to={to_idx}. Max index is {num_abstractions-1}.")
|
|
validated_relationships.append({
|
|
"from": from_idx,
|
|
"to": to_idx,
|
|
"label": rel["label"] # Potentially translated label
|
|
})
|
|
except (ValueError, TypeError):
|
|
raise ValueError(f"Could not parse indices from relationship: {rel}")
|
|
|
|
print("Generated project summary and relationship details.")
|
|
return {
|
|
"summary": relationships_data["summary"], # Potentially translated summary
|
|
"details": validated_relationships # Store validated, index-based relationships with potentially translated labels
|
|
}
|
|
|
|
|
|
def post(self, shared, prep_res, exec_res):
|
|
# Structure is now {"summary": str, "details": [{"from": int, "to": int, "label": str}]}
|
|
# Summary and label might be translated
|
|
shared["relationships"] = exec_res
|
|
|
|
class OrderChapters(Node):
|
|
def prep(self, shared):
|
|
abstractions = shared["abstractions"] # Name/description might be translated
|
|
relationships = shared["relationships"] # Summary/label might be translated
|
|
project_name = shared["project_name"] # Get project name
|
|
language = shared.get("language", "english") # Get language
|
|
|
|
# Prepare context for the LLM
|
|
abstraction_info_for_prompt = []
|
|
for i, a in enumerate(abstractions):
|
|
abstraction_info_for_prompt.append(f"- {i} # {a['name']}") # Use potentially translated name
|
|
abstraction_listing = "\n".join(abstraction_info_for_prompt)
|
|
|
|
# Use potentially translated summary and labels
|
|
summary_note = ""
|
|
if language.lower() != "english":
|
|
summary_note = f" (Note: Project Summary might be in {language.capitalize()})"
|
|
|
|
context = f"Project Summary{summary_note}:\n{relationships['summary']}\n\n"
|
|
context += "Relationships (Indices refer to abstractions above):\n"
|
|
for rel in relationships['details']:
|
|
from_name = abstractions[rel['from']]['name']
|
|
to_name = abstractions[rel['to']]['name']
|
|
# Use potentially translated 'label'
|
|
context += f"- From {rel['from']} ({from_name}) to {rel['to']} ({to_name}): {rel['label']}\n" # Label might be translated
|
|
|
|
list_lang_note = ""
|
|
if language.lower() != "english":
|
|
list_lang_note = f" (Names might be in {language.capitalize()})"
|
|
|
|
return abstraction_listing, context, len(abstractions), project_name, list_lang_note
|
|
|
|
def exec(self, prep_res):
|
|
abstraction_listing, context, num_abstractions, project_name, list_lang_note = prep_res
|
|
print("Determining chapter order using LLM...")
|
|
# No language variation needed here in prompt instructions, just ordering based on structure
|
|
# The input names might be translated, hence the note.
|
|
prompt = f"""
|
|
Given the following project abstractions and their relationships for the project ```` {project_name} ````:
|
|
|
|
Abstractions (Index # Name){list_lang_note}:
|
|
{abstraction_listing}
|
|
|
|
Context about relationships and project summary:
|
|
{context}
|
|
|
|
If you are going to make a tutorial for ```` {project_name} ````, what is the best order to explain these abstractions, from first to last?
|
|
Ideally, first explain those that are the most important or foundational, perhaps user-facing concepts or entry points. Then move to more detailed, lower-level implementation details or supporting concepts.
|
|
|
|
Output the ordered list of abstraction indices, including the name in a comment for clarity. Use the format `idx # AbstractionName`.
|
|
|
|
```yaml
|
|
- 2 # FoundationalConcept
|
|
- 0 # CoreClassA
|
|
- 1 # CoreClassB (uses CoreClassA)
|
|
- ...
|
|
```
|
|
|
|
Now, provide the YAML output:
|
|
"""
|
|
response = call_llm(prompt)
|
|
|
|
# --- Validation ---
|
|
yaml_str = response.strip().split("```yaml")[1].split("```")[0].strip()
|
|
ordered_indices_raw = yaml.safe_load(yaml_str)
|
|
|
|
if not isinstance(ordered_indices_raw, list):
|
|
raise ValueError("LLM output is not a list")
|
|
|
|
ordered_indices = []
|
|
seen_indices = set()
|
|
for entry in ordered_indices_raw:
|
|
try:
|
|
if isinstance(entry, int):
|
|
idx = entry
|
|
elif isinstance(entry, str) and '#' in entry:
|
|
idx = int(entry.split('#')[0].strip())
|
|
else:
|
|
idx = int(str(entry).strip())
|
|
|
|
if not (0 <= idx < num_abstractions):
|
|
raise ValueError(f"Invalid index {idx} in ordered list. Max index is {num_abstractions-1}.")
|
|
if idx in seen_indices:
|
|
raise ValueError(f"Duplicate index {idx} found in ordered list.")
|
|
ordered_indices.append(idx)
|
|
seen_indices.add(idx)
|
|
|
|
except (ValueError, TypeError):
|
|
raise ValueError(f"Could not parse index from ordered list entry: {entry}")
|
|
|
|
# Check if all abstractions are included
|
|
if len(ordered_indices) != num_abstractions:
|
|
raise ValueError(f"Ordered list length ({len(ordered_indices)}) does not match number of abstractions ({num_abstractions}). Missing indices: {set(range(num_abstractions)) - seen_indices}")
|
|
|
|
print(f"Determined chapter order (indices): {ordered_indices}")
|
|
return ordered_indices # Return the list of indices
|
|
|
|
def post(self, shared, prep_res, exec_res):
|
|
# exec_res is already the list of ordered indices
|
|
shared["chapter_order"] = exec_res # List of indices
|
|
|
|
class WriteChapters(BatchNode):
|
|
def prep(self, shared):
|
|
chapter_order = shared["chapter_order"] # List of indices
|
|
abstractions = shared["abstractions"] # List of dicts, name/desc potentially translated
|
|
files_data = shared["files"]
|
|
language = shared.get("language", "english") # Get language
|
|
|
|
# Get already written chapters to provide context
|
|
# We store them temporarily during the batch run, not in shared memory yet
|
|
# The 'previous_chapters_summary' will be built progressively in the exec context
|
|
self.chapters_written_so_far = [] # Use instance variable for temporary storage across exec calls
|
|
|
|
# Create a complete list of all chapters
|
|
all_chapters = []
|
|
chapter_filenames = {} # Store chapter filename mapping for linking
|
|
for i, abstraction_index in enumerate(chapter_order):
|
|
if 0 <= abstraction_index < len(abstractions):
|
|
chapter_num = i + 1
|
|
chapter_name = abstractions[abstraction_index]["name"] # Potentially translated name
|
|
# Create safe filename (from potentially translated name)
|
|
safe_name = "".join(c if c.isalnum() else '_' for c in chapter_name).lower()
|
|
filename = f"{i+1:02d}_{safe_name}.md"
|
|
# Format with link (using potentially translated name)
|
|
all_chapters.append(f"{chapter_num}. [{chapter_name}]({filename})")
|
|
# Store mapping of chapter index to filename for linking
|
|
chapter_filenames[abstraction_index] = {"num": chapter_num, "name": chapter_name, "filename": filename}
|
|
|
|
# Create a formatted string with all chapters
|
|
full_chapter_listing = "\n".join(all_chapters)
|
|
|
|
items_to_process = []
|
|
for i, abstraction_index in enumerate(chapter_order):
|
|
if 0 <= abstraction_index < len(abstractions):
|
|
abstraction_details = abstractions[abstraction_index] # Contains potentially translated name/desc
|
|
# Use 'files' (list of indices) directly
|
|
related_file_indices = abstraction_details.get("files", [])
|
|
# Get content using helper, passing indices
|
|
related_files_content_map = get_content_for_indices(files_data, related_file_indices)
|
|
|
|
# Get previous chapter info for transitions (uses potentially translated name)
|
|
prev_chapter = None
|
|
if i > 0:
|
|
prev_idx = chapter_order[i-1]
|
|
prev_chapter = chapter_filenames[prev_idx]
|
|
|
|
# Get next chapter info for transitions (uses potentially translated name)
|
|
next_chapter = None
|
|
if i < len(chapter_order) - 1:
|
|
next_idx = chapter_order[i+1]
|
|
next_chapter = chapter_filenames[next_idx]
|
|
|
|
items_to_process.append({
|
|
"chapter_num": i + 1,
|
|
"abstraction_index": abstraction_index,
|
|
"abstraction_details": abstraction_details, # Has potentially translated name/desc
|
|
"related_files_content_map": related_files_content_map,
|
|
"project_name": shared["project_name"], # Add project name
|
|
"full_chapter_listing": full_chapter_listing, # Add the full chapter listing (uses potentially translated names)
|
|
"chapter_filenames": chapter_filenames, # Add chapter filenames mapping (uses potentially translated names)
|
|
"prev_chapter": prev_chapter, # Add previous chapter info (uses potentially translated name)
|
|
"next_chapter": next_chapter, # Add next chapter info (uses potentially translated name)
|
|
"language": language, # Add language for multi-language support
|
|
# previous_chapters_summary will be added dynamically in exec
|
|
})
|
|
else:
|
|
print(f"Warning: Invalid abstraction index {abstraction_index} in chapter_order. Skipping.")
|
|
|
|
print(f"Preparing to write {len(items_to_process)} chapters...")
|
|
return items_to_process # Iterable for BatchNode
|
|
|
|
def exec(self, item):
|
|
# This runs for each item prepared above
|
|
abstraction_name = item["abstraction_details"]["name"] # Potentially translated name
|
|
abstraction_description = item["abstraction_details"]["description"] # Potentially translated description
|
|
chapter_num = item["chapter_num"]
|
|
project_name = item.get("project_name")
|
|
language = item.get("language", "english")
|
|
print(f"Writing chapter {chapter_num} for: {abstraction_name} using LLM...")
|
|
|
|
# Prepare file context string from the map
|
|
file_context_str = "\n\n".join(
|
|
f"--- File: {idx_path.split('# ')[1] if '# ' in idx_path else idx_path} ---\n{content}"
|
|
for idx_path, content in item["related_files_content_map"].items()
|
|
)
|
|
|
|
# Get summary of chapters written *before* this one
|
|
# Use the temporary instance variable
|
|
previous_chapters_summary = "\n---\n".join(self.chapters_written_so_far)
|
|
|
|
# Add language instruction and context notes only if not English
|
|
language_instruction = ""
|
|
concept_details_note = ""
|
|
structure_note = ""
|
|
prev_summary_note = ""
|
|
instruction_lang_note = ""
|
|
mermaid_lang_note = ""
|
|
code_comment_note = ""
|
|
link_lang_note = ""
|
|
tone_note = ""
|
|
if language.lower() != "english":
|
|
lang_cap = language.capitalize()
|
|
language_instruction = f"IMPORTANT: Write this ENTIRE tutorial chapter in **{lang_cap}**. Some input context (like concept name, description, chapter list, previous summary) might already be in {lang_cap}, but you MUST translate ALL other generated content including explanations, examples, technical terms, and potentially code comments into {lang_cap}. DO NOT use English anywhere except in code syntax, required proper nouns, or when specified. The entire output MUST be in {lang_cap}.\n\n"
|
|
concept_details_note = f" (Note: Provided in {lang_cap})"
|
|
structure_note = f" (Note: Chapter names might be in {lang_cap})"
|
|
prev_summary_note = f" (Note: This summary might be in {lang_cap})"
|
|
instruction_lang_note = f" (in {lang_cap})"
|
|
mermaid_lang_note = f" (Use {lang_cap} for labels/text if appropriate)"
|
|
code_comment_note = f" (Translate to {lang_cap} if possible, otherwise keep minimal English for clarity)"
|
|
link_lang_note = f" (Use the {lang_cap} chapter title from the structure above)"
|
|
tone_note = f" (appropriate for {lang_cap} readers)"
|
|
|
|
|
|
prompt = f"""
|
|
{language_instruction}Write a very beginner-friendly tutorial chapter (in Markdown format) for the project `{project_name}` about the concept: "{abstraction_name}". This is Chapter {chapter_num}.
|
|
|
|
Concept Details{concept_details_note}:
|
|
- Name: {abstraction_name}
|
|
- Description:
|
|
{abstraction_description}
|
|
|
|
Complete Tutorial Structure{structure_note}:
|
|
{item["full_chapter_listing"]}
|
|
|
|
Context from previous chapters{prev_summary_note}:
|
|
{previous_chapters_summary if previous_chapters_summary else "This is the first chapter."}
|
|
|
|
Relevant Code Snippets (Code itself remains unchanged):
|
|
{file_context_str if file_context_str else "No specific code snippets provided for this abstraction."}
|
|
|
|
Instructions for the chapter (Generate content in {language.capitalize()} unless specified otherwise):
|
|
- Start with a clear heading (e.g., `# Chapter {chapter_num}: {abstraction_name}`). Use the provided concept name.
|
|
|
|
- If this is not the first chapter, begin with a brief transition from the previous chapter{instruction_lang_note}, referencing it with a proper Markdown link using its name{link_lang_note}.
|
|
|
|
- Begin with a high-level motivation explaining what problem this abstraction solves{instruction_lang_note}. Start with a central use case as a concrete example. The whole chapter should guide the reader to understand how to solve this use case. Make it very minimal and friendly to beginners.
|
|
|
|
- If the abstraction is complex, break it down into key concepts. Explain each concept one-by-one in a very beginner-friendly way{instruction_lang_note}.
|
|
|
|
- Explain how to use this abstraction to solve the use case{instruction_lang_note}. Give example inputs and outputs for code snippets (if the output isn't values, describe at a high level what will happen{instruction_lang_note}).
|
|
|
|
- Each code block should be BELOW 20 lines! If longer code blocks are needed, break them down into smaller pieces and walk through them one-by-one. Aggresively simplify the code to make it minimal. Use comments{code_comment_note} to skip non-important implementation details. Each code block should have a beginner friendly explanation right after it{instruction_lang_note}.
|
|
|
|
- Describe the internal implementation to help understand what's under the hood{instruction_lang_note}. First provide a non-code or code-light walkthrough on what happens step-by-step when the abstraction is called{instruction_lang_note}. It's recommended to use a simple sequenceDiagram with a dummy example - keep it minimal with at most 5 participants to ensure clarity. If participant name has space, use: `participant QP as Query Processing`. {mermaid_lang_note}.
|
|
|
|
- Then dive deeper into code for the internal implementation with references to files. Provide example code blocks, but make them similarly simple and beginner-friendly. Explain{instruction_lang_note}.
|
|
|
|
- IMPORTANT: When you need to refer to other core abstractions covered in other chapters, ALWAYS use proper Markdown links like this: [Chapter Title](filename.md). Use the Complete Tutorial Structure above to find the correct filename and the chapter title{link_lang_note}. Translate the surrounding text.
|
|
|
|
- Use mermaid diagrams to illustrate complex concepts (```mermaid``` format). {mermaid_lang_note}.
|
|
|
|
- Heavily use analogies and examples throughout{instruction_lang_note} to help beginners understand.
|
|
|
|
- End the chapter with a brief conclusion that summarizes what was learned{instruction_lang_note} and provides a transition to the next chapter{instruction_lang_note}. If there is a next chapter, use a proper Markdown link: [Next Chapter Title](next_chapter_filename){link_lang_note}.
|
|
|
|
- Ensure the tone is welcoming and easy for a newcomer to understand{tone_note}.
|
|
|
|
- Output *only* the Markdown content for this chapter.
|
|
|
|
Now, directly provide a super beginner-friendly Markdown output (DON'T need ```markdown``` tags):
|
|
"""
|
|
chapter_content = call_llm(prompt)
|
|
# Basic validation/cleanup
|
|
actual_heading = f"# Chapter {chapter_num}: {abstraction_name}" # Use potentially translated name
|
|
if not chapter_content.strip().startswith(f"# Chapter {chapter_num}"):
|
|
# Add heading if missing or incorrect, trying to preserve content
|
|
lines = chapter_content.strip().split('\n')
|
|
if lines and lines[0].strip().startswith("#"): # If there's some heading, replace it
|
|
lines[0] = actual_heading
|
|
chapter_content = "\n".join(lines)
|
|
else: # Otherwise, prepend it
|
|
chapter_content = f"{actual_heading}\n\n{chapter_content}"
|
|
|
|
# Add the generated content to our temporary list for the next iteration's context
|
|
self.chapters_written_so_far.append(chapter_content)
|
|
|
|
return chapter_content # Return the Markdown string (potentially translated)
|
|
|
|
def post(self, shared, prep_res, exec_res_list):
|
|
# exec_res_list contains the generated Markdown for each chapter, in order
|
|
shared["chapters"] = exec_res_list
|
|
# Clean up the temporary instance variable
|
|
del self.chapters_written_so_far
|
|
print(f"Finished writing {len(exec_res_list)} chapters.")
|
|
|
|
class CombineTutorial(Node):
|
|
def prep(self, shared):
|
|
project_name = shared["project_name"]
|
|
output_base_dir = shared.get("output_dir", "output") # Default output dir
|
|
output_path = os.path.join(output_base_dir, project_name)
|
|
repo_url = shared.get("repo_url") # Get the repository URL
|
|
# language = shared.get("language", "english") # No longer needed for fixed strings
|
|
|
|
# Get potentially translated data
|
|
relationships_data = shared["relationships"] # {"summary": str, "details": [{"from": int, "to": int, "label": str}]} -> summary/label potentially translated
|
|
chapter_order = shared["chapter_order"] # indices
|
|
abstractions = shared["abstractions"] # list of dicts -> name/description potentially translated
|
|
chapters_content = shared["chapters"] # list of strings -> content potentially translated
|
|
|
|
# --- Generate Mermaid Diagram ---
|
|
mermaid_lines = ["flowchart TD"]
|
|
# Add nodes for each abstraction using potentially translated names
|
|
for i, abstr in enumerate(abstractions):
|
|
node_id = f"A{i}"
|
|
# Use potentially translated name, sanitize for Mermaid ID and label
|
|
sanitized_name = abstr['name'].replace('"', '')
|
|
node_label = sanitized_name # Using sanitized name only
|
|
mermaid_lines.append(f' {node_id}["{node_label}"]') # Node label uses potentially translated name
|
|
# Add edges for relationships using potentially translated labels
|
|
for rel in relationships_data['details']:
|
|
from_node_id = f"A{rel['from']}"
|
|
to_node_id = f"A{rel['to']}"
|
|
# Use potentially translated label, sanitize
|
|
edge_label = rel['label'].replace('"', '').replace('\n', ' ') # Basic sanitization
|
|
max_label_len = 30
|
|
if len(edge_label) > max_label_len:
|
|
edge_label = edge_label[:max_label_len-3] + "..."
|
|
mermaid_lines.append(f' {from_node_id} -- "{edge_label}" --> {to_node_id}') # Edge label uses potentially translated label
|
|
|
|
mermaid_diagram = "\n".join(mermaid_lines)
|
|
# --- End Mermaid ---
|
|
|
|
# --- Prepare index.md content ---
|
|
index_content = f"# Tutorial: {project_name}\n\n"
|
|
index_content += f"{relationships_data['summary']}\n\n" # Use the potentially translated summary directly
|
|
# Keep fixed strings in English
|
|
index_content += f"**Source Repository:** [{repo_url}]({repo_url})\n\n"
|
|
|
|
# Add Mermaid diagram for relationships (diagram itself uses potentially translated names/labels)
|
|
index_content += "```mermaid\n"
|
|
index_content += mermaid_diagram + "\n"
|
|
index_content += "```\n\n"
|
|
|
|
# Keep fixed strings in English
|
|
index_content += f"## Chapters\n\n"
|
|
|
|
chapter_files = []
|
|
# Generate chapter links based on the determined order, using potentially translated names
|
|
for i, abstraction_index in enumerate(chapter_order):
|
|
# Ensure index is valid and we have content for it
|
|
if 0 <= abstraction_index < len(abstractions) and i < len(chapters_content):
|
|
abstraction_name = abstractions[abstraction_index]["name"] # Potentially translated name
|
|
# Sanitize potentially translated name for filename
|
|
safe_name = "".join(c if c.isalnum() else '_' for c in abstraction_name).lower()
|
|
filename = f"{i+1:02d}_{safe_name}.md"
|
|
index_content += f"{i+1}. [{abstraction_name}]({filename})\n" # Use potentially translated name in link text
|
|
|
|
# Add attribution to chapter content (using English fixed string)
|
|
chapter_content = chapters_content[i] # Potentially translated content
|
|
if not chapter_content.endswith("\n\n"):
|
|
chapter_content += "\n\n"
|
|
# Keep fixed strings in English
|
|
chapter_content += f"---\n\nGenerated by [AI Codebase Knowledge Builder](https://github.com/The-Pocket/Tutorial-Codebase-Knowledge)"
|
|
|
|
# Store filename and corresponding content
|
|
chapter_files.append({"filename": filename, "content": chapter_content})
|
|
else:
|
|
print(f"Warning: Mismatch between chapter order, abstractions, or content at index {i} (abstraction index {abstraction_index}). Skipping file generation for this entry.")
|
|
|
|
# Add attribution to index content (using English fixed string)
|
|
index_content += f"\n\n---\n\nGenerated by [AI Codebase Knowledge Builder](https://github.com/The-Pocket/Tutorial-Codebase-Knowledge)"
|
|
|
|
return {
|
|
"output_path": output_path,
|
|
"index_content": index_content,
|
|
"chapter_files": chapter_files # List of {"filename": str, "content": str}
|
|
}
|
|
|
|
def exec(self, prep_res):
|
|
output_path = prep_res["output_path"]
|
|
index_content = prep_res["index_content"]
|
|
chapter_files = prep_res["chapter_files"]
|
|
|
|
print(f"Combining tutorial into directory: {output_path}")
|
|
# Rely on Node's built-in retry/fallback
|
|
os.makedirs(output_path, exist_ok=True)
|
|
|
|
# Write index.md
|
|
index_filepath = os.path.join(output_path, "index.md")
|
|
with open(index_filepath, "w", encoding="utf-8") as f:
|
|
f.write(index_content)
|
|
print(f" - Wrote {index_filepath}")
|
|
|
|
# Write chapter files
|
|
for chapter_info in chapter_files:
|
|
chapter_filepath = os.path.join(output_path, chapter_info["filename"])
|
|
with open(chapter_filepath, "w", encoding="utf-8") as f:
|
|
f.write(chapter_info["content"])
|
|
print(f" - Wrote {chapter_filepath}")
|
|
|
|
return output_path # Return the final path
|
|
|
|
|
|
def post(self, shared, prep_res, exec_res):
|
|
shared["final_output_dir"] = exec_res # Store the output path
|
|
print(f"\nTutorial generation complete! Files are in: {exec_res}")
|