Files
InvSR/latent_lpips/lpips.py
2024-12-11 18:46:36 +08:00

217 lines
9.0 KiB
Python
Executable File

from __future__ import absolute_import
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
import numpy as np
from . import pretrained_networks as pn
def normalize_tensor(in_feat,eps=1e-10):
norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1,keepdim=True))
return in_feat/(norm_factor+eps)
def spatial_average(in_tens, keepdim=True):
return in_tens.mean([2,3],keepdim=keepdim)
def upsample(in_tens, out_HW=(64,64)): # assumes scale factor is same for H and W
in_H, in_W = in_tens.shape[2], in_tens.shape[3]
return nn.Upsample(size=out_HW, mode='bilinear', align_corners=False)(in_tens)
# Learned perceptual metric
class LPIPS(nn.Module):
def __init__(self, pretrained=True, net='alex', version='0.1', lpips=True, spatial=False,
pnet_rand=False, pnet_tune=False, use_dropout=True, model_path=None, eval_mode=True,
latent=False, in_chans=3, verbose=True):
""" Initializes a perceptual loss torch.nn.Module
Parameters (default listed first)
---------------------------------
lpips : bool
[True] use linear layers on top of base/trunk network
[False] means no linear layers; each layer is averaged together
pretrained : bool
This flag controls the linear layers, which are only in effect when lpips=True above
[True] means linear layers are calibrated with human perceptual judgments
[False] means linear layers are randomly initialized
pnet_rand : bool
[False] means trunk loaded with ImageNet classification weights
[True] means randomly initialized trunk
net : str
['alex','vgg','squeeze'] are the base/trunk networks available
version : str
['v0.1'] is the default and latest
['v0.0'] contained a normalization bug; corresponds to old arxiv v1 (https://arxiv.org/abs/1801.03924v1)
model_path : 'str'
[None] is default and loads the pretrained weights from paper https://arxiv.org/abs/1801.03924v1
The following parameters should only be changed if training the network
eval_mode : bool
[True] is for test mode (default)
[False] is for training mode
pnet_tune
[False] keep base/trunk frozen
[True] tune the base/trunk network
use_dropout : bool
[True] to use dropout when training linear layers
[False] for no dropout when training linear layers
"""
super(LPIPS, self).__init__()
if(verbose):
print('Setting up [%s] perceptual loss: trunk [%s], v[%s], spatial [%s]'%
('LPIPS' if lpips else 'baseline', net, version, 'on' if spatial else 'off'))
self.pnet_type = net
self.pnet_tune = pnet_tune
self.pnet_rand = pnet_rand
self.spatial = spatial
self.latent = latent
self.lpips = lpips # false means baseline of just averaging all layers
self.version = version
self.scaling_layer = ScalingLayer()
if(self.pnet_type in ['vgg','vgg16']):
if not latent:
net_type = pn.vgg16
else:
net_type = pn.vgg16_latent
self.chns = [64,128,256,512,512]
elif(self.pnet_type=='alex'):
net_type = pn.alexnet
self.chns = [64,192,384,256,256]
elif(self.pnet_type=='squeeze'):
net_type = pn.squeezenet
self.chns = [64,128,256,384,384,512,512]
self.L = len(self.chns)
if latent:
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune, in_chans=in_chans)
else:
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
if(lpips):
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4]
if(self.pnet_type=='squeeze'): # 7 layers for squeezenet
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
self.lins+=[self.lin5,self.lin6]
self.lins = nn.ModuleList(self.lins)
if(pretrained):
if(model_path is None):
import inspect
import os
model_path = os.path.abspath(os.path.join(inspect.getfile(self.__init__), '..', 'weights/v%s/%s.pth'%(version,net)))
if(verbose):
print('Loading model from: %s'%model_path)
missing_keys, unexpected_keys = self.load_state_dict(
torch.load(model_path, map_location='cpu'),
strict=False,
)
print(f'Number of missing keys when loading chckepoint: {len(missing_keys)}')
print(f'Number of unexpected keys when loading chckepoint: {len(unexpected_keys)}')
if(eval_mode):
self.eval()
def forward(self, in0, in1, retPerLayer=False, normalize=False):
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, +1]
in0 = 2 * in0 - 1
in1 = 2 * in1 - 1
# v0.0 - original release had a bug, where input was not scaled
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if (not self.latent and self.version=='0.1') else (in0, in1)
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk]-feats1[kk])**2
if(self.lpips):
if(self.spatial):
res = [upsample(self.lins[kk](diffs[kk]), out_HW=in0.shape[2:]) for kk in range(self.L)]
else:
res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
else:
if(self.spatial):
res = [upsample(diffs[kk].sum(dim=1,keepdim=True), out_HW=in0.shape[2:]) for kk in range(self.L)]
else:
res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for kk in range(self.L)]
val = 0
for l in range(self.L):
val += res[l]
if(retPerLayer):
return (val, res)
else:
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])[None,:,None,None])
self.register_buffer('scale', torch.Tensor([.458,.448,.450])[None,:,None,None])
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
''' A single linear layer which does a 1x1 conv '''
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = [nn.Dropout(),] if(use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class Dist2LogitLayer(nn.Module):
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
def __init__(self, chn_mid=32, use_sigmoid=True):
super(Dist2LogitLayer, self).__init__()
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),]
layers += [nn.LeakyReLU(0.2,True),]
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),]
if(use_sigmoid):
layers += [nn.Sigmoid(),]
self.model = nn.Sequential(*layers)
def forward(self,d0,d1,eps=0.1):
return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1))
class BCERankingLoss(nn.Module):
def __init__(self, chn_mid=32):
super(BCERankingLoss, self).__init__()
self.net = Dist2LogitLayer(chn_mid=chn_mid, use_sigmoid=False)
# self.parameters = list(self.net.parameters())
# self.loss = torch.nn.BCELoss()
self.loss = torch.nn.BCEWithLogitsLoss()
def forward(self, d0, d1, judge):
per = (judge+1.)/2.
self.logit = self.net.forward(d0,d1)
return self.loss(self.logit, per)
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Network',net)
print('Total number of parameters: %d' % num_params)