mirror of
https://github.com/aljazceru/InvSR.git
synced 2025-12-16 22:04:20 +01:00
286 lines
12 KiB
Python
286 lines
12 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding:utf-8 -*-
|
|
# Power by Zongsheng Yue 2022-07-13 16:59:27
|
|
|
|
import os, sys, math, random
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from loguru import logger
|
|
from omegaconf import OmegaConf
|
|
|
|
from utils import util_net
|
|
from utils import util_image
|
|
from utils import util_common
|
|
from utils import util_color_fix
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
|
|
from datapipe.datasets import create_dataset
|
|
from diffusers import StableDiffusionInvEnhancePipeline, AutoencoderKL
|
|
|
|
_positive= 'Cinematic, high-contrast, photo-realistic, 8k, ultra HD, ' +\
|
|
'meticulous detailing, hyper sharpness, perfect without deformations'
|
|
_negative= 'Low quality, blurring, jpeg artifacts, deformed, over-smooth, cartoon, noisy,' +\
|
|
'painting, drawing, sketch, oil painting'
|
|
|
|
class BaseSampler:
|
|
def __init__(self, configs):
|
|
'''
|
|
Input:
|
|
configs: config, see the yaml file in folder ./configs/
|
|
configs.sampler_config.{start_timesteps, padding_mod, seed, sf, num_sample_steps}
|
|
seed: int, random seed
|
|
'''
|
|
self.configs = configs
|
|
|
|
self.setup_seed()
|
|
|
|
self.build_model()
|
|
|
|
def setup_seed(self, seed=None):
|
|
seed = self.configs.seed if seed is None else seed
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
def write_log(self, log_str):
|
|
print(log_str, flush=True)
|
|
|
|
def build_model(self):
|
|
# Build Stable diffusion
|
|
params = dict(self.configs.sd_pipe.params)
|
|
torch_dtype = params.pop('torch_dtype')
|
|
params['torch_dtype'] = get_torch_dtype(torch_dtype)
|
|
base_pipe = util_common.get_obj_from_str(self.configs.sd_pipe.target).from_pretrained(**params)
|
|
if self.configs.get('scheduler', None) is not None:
|
|
pipe_id = self.configs.scheduler.target.split('.')[-1]
|
|
self.write_log(f'Loading scheduler of {pipe_id}...')
|
|
base_pipe.scheduler = util_common.get_obj_from_str(self.configs.scheduler.target).from_config(
|
|
base_pipe.scheduler.config
|
|
)
|
|
self.write_log('Loaded Done')
|
|
if self.configs.get('vae_fp16', None) is not None:
|
|
params_vae = dict(self.configs.vae_fp16.params)
|
|
torch_dtype = params_vae.pop('torch_dtype')
|
|
params_vae['torch_dtype'] = get_torch_dtype(torch_dtype)
|
|
pipe_id = self.configs.vae_fp16.params.pretrained_model_name_or_path
|
|
self.write_log(f'Loading improved vae from {pipe_id}...')
|
|
base_pipe.vae = util_common.get_obj_from_str(self.configs.vae_fp16.target).from_pretrained(
|
|
**params_vae,
|
|
)
|
|
self.write_log('Loaded Done')
|
|
if self.configs.base_model in ['sd-turbo', 'sd2base'] :
|
|
sd_pipe = StableDiffusionInvEnhancePipeline.from_pipe(base_pipe)
|
|
else:
|
|
raise ValueError(f"Unsupported base model: {self.configs.base_model}!")
|
|
sd_pipe.to(f"cuda")
|
|
if self.configs.sliced_vae:
|
|
sd_pipe.vae.enable_slicing()
|
|
if self.configs.tiled_vae:
|
|
sd_pipe.vae.enable_tiling()
|
|
sd_pipe.vae.tile_latent_min_size = self.configs.latent_tiled_size
|
|
sd_pipe.vae.tile_sample_min_size = self.configs.sample_tiled_size
|
|
if self.configs.gradient_checkpointing_vae:
|
|
self.write_log(f"Activating gradient checkpoing for vae...")
|
|
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.encoder, True)
|
|
sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.decoder, True)
|
|
|
|
model_configs = self.configs.model_start
|
|
params = model_configs.get('params', dict)
|
|
model_start = util_common.get_obj_from_str(model_configs.target)(**params)
|
|
model_start.cuda()
|
|
ckpt_path = model_configs.get('ckpt_path')
|
|
assert ckpt_path is not None
|
|
self.write_log(f"Loading started model from {ckpt_path}...")
|
|
state = torch.load(ckpt_path, map_location=f"cuda")
|
|
if 'state_dict' in state:
|
|
state = state['state_dict']
|
|
util_net.reload_model(model_start, state)
|
|
self.write_log(f"Loading Done")
|
|
model_start.eval()
|
|
setattr(sd_pipe, 'start_noise_predictor', model_start)
|
|
|
|
self.sd_pipe = sd_pipe
|
|
|
|
class InvSamplerSR(BaseSampler):
|
|
@torch.no_grad()
|
|
def sample_func(self, im_cond):
|
|
'''
|
|
Input:
|
|
im_cond: b x c x h x w, torch tensor, [0,1], RGB
|
|
Output:
|
|
xt: h x w x c, numpy array, [0,1], RGB
|
|
'''
|
|
if self.configs.cfg_scale > 1.0:
|
|
negative_prompt = [_negative,]*im_cond.shape[0]
|
|
else:
|
|
negative_prompt = None
|
|
|
|
ori_h_lq, ori_w_lq = im_cond.shape[-2:]
|
|
ori_w_hq = ori_w_lq * self.configs.basesr.sf
|
|
ori_h_hq = ori_h_lq * self.configs.basesr.sf
|
|
vae_sf = (2 ** (len(self.sd_pipe.vae.config.block_out_channels) - 1))
|
|
if hasattr(self.sd_pipe, 'unet'):
|
|
diffusion_sf = (2 ** (len(self.sd_pipe.unet.config.block_out_channels) - 1))
|
|
else:
|
|
diffusion_sf = self.sd_pipe.transformer.patch_size
|
|
mod_lq = vae_sf // self.configs.basesr.sf * diffusion_sf
|
|
idle_pch_size = self.configs.basesr.chopping.pch_size
|
|
|
|
if min(im_cond.shape[-2:]) >= idle_pch_size:
|
|
pad_h_up = pad_w_left = 0
|
|
else:
|
|
while min(im_cond.shape[-2:]) < idle_pch_size:
|
|
pad_h_up = max(min((idle_pch_size - im_cond.shape[-2]) // 2, im_cond.shape[-2]-1), 0)
|
|
pad_h_down = max(min(idle_pch_size - im_cond.shape[-2] - pad_h_up, im_cond.shape[-2]-1), 0)
|
|
pad_w_left = max(min((idle_pch_size - im_cond.shape[-1]) // 2, im_cond.shape[-1]-1), 0)
|
|
pad_w_right = max(min(idle_pch_size - im_cond.shape[-1] - pad_w_left, im_cond.shape[-1]-1), 0)
|
|
im_cond = F.pad(im_cond, pad=(pad_w_left, pad_w_right, pad_h_up, pad_h_down), mode='reflect')
|
|
|
|
if im_cond.shape[-2] == idle_pch_size and im_cond.shape[-1] == idle_pch_size:
|
|
target_size = (
|
|
im_cond.shape[-2] * self.configs.basesr.sf,
|
|
im_cond.shape[-1] * self.configs.basesr.sf
|
|
)
|
|
res_sr = self.sd_pipe(
|
|
image=im_cond.type(torch.float16),
|
|
prompt=[_positive, ]*im_cond.shape[0],
|
|
negative_prompt=negative_prompt,
|
|
target_size=target_size,
|
|
timesteps=self.configs.timesteps,
|
|
guidance_scale=self.configs.cfg_scale,
|
|
output_type="pt", # torch tensor, b x c x h x w, [0, 1]
|
|
).images
|
|
else:
|
|
if not (im_cond.shape[-2] % mod_lq == 0 and im_cond.shape[-1] % mod_lq == 0):
|
|
target_h_lq = math.ceil(im_cond.shape[-2] / mod_lq) * mod_lq
|
|
target_w_lq = math.ceil(im_cond.shape[-1] / mod_lq) * mod_lq
|
|
pad_h = target_h_lq - im_cond.shape[-2]
|
|
pad_w = target_w_lq - im_cond.shape[-1]
|
|
im_cond= F.pad(im_cond, pad=(0, pad_w, 0, pad_h), mode='reflect')
|
|
|
|
im_spliter = util_image.ImageSpliterTh(
|
|
im_cond,
|
|
pch_size=idle_pch_size,
|
|
stride= int(idle_pch_size * 0.50),
|
|
sf=self.configs.basesr.sf,
|
|
weight_type=self.configs.basesr.chopping.weight_type,
|
|
extra_bs=self.configs.basesr.chopping.extra_bs,
|
|
)
|
|
for im_lq_pch, index_infos in im_spliter:
|
|
target_size = (
|
|
im_lq_pch.shape[-2] * self.configs.basesr.sf,
|
|
im_lq_pch.shape[-1] * self.configs.basesr.sf,
|
|
)
|
|
|
|
# start = torch.cuda.Event(enable_timing=True)
|
|
# end = torch.cuda.Event(enable_timing=True)
|
|
# start.record()
|
|
|
|
res_sr_pch = self.sd_pipe(
|
|
image=im_lq_pch.type(torch.float16),
|
|
prompt=[_positive, ]*im_lq_pch.shape[0],
|
|
negative_prompt=negative_prompt,
|
|
target_size=target_size,
|
|
timesteps=self.configs.timesteps,
|
|
guidance_scale=self.configs.cfg_scale,
|
|
output_type="pt", # torch tensor, b x c x h x w, [0, 1]
|
|
).images
|
|
|
|
# end.record()
|
|
# torch.cuda.synchronize()
|
|
# print(f"Time: {start.elapsed_time(end):.6f}")
|
|
|
|
im_spliter.update(res_sr_pch, index_infos)
|
|
res_sr = im_spliter.gather()
|
|
|
|
pad_h_up *= self.configs.basesr.sf
|
|
pad_w_left *= self.configs.basesr.sf
|
|
res_sr = res_sr[:, :, pad_h_up:ori_h_hq+pad_h_up, pad_w_left:ori_w_hq+pad_w_left]
|
|
|
|
if self.configs.color_fix:
|
|
im_cond_up = F.interpolate(
|
|
im_cond, size=res_sr.shape[-2:], mode='bicubic', align_corners=False, antialias=True
|
|
)
|
|
if self.configs.color_fix == 'ycbcr':
|
|
res_sr = util_color_fix.ycbcr_color_replace(res_sr, im_cond_up)
|
|
elif self.configs.color_fix == 'wavelet':
|
|
res_sr = util_color_fix.wavelet_reconstruction(res_sr, im_cond_up)
|
|
else:
|
|
raise ValueError(f"Unsupported color fixing type: {self.configs.color_fix}")
|
|
|
|
res_sr = res_sr.clamp(0.0, 1.0).cpu().permute(0,2,3,1).float().numpy()
|
|
|
|
return res_sr
|
|
|
|
def inference(self, in_path, out_path, bs=1):
|
|
'''
|
|
Inference demo.
|
|
Input:
|
|
in_path: str, folder or image path for LQ image
|
|
out_path: str, folder save the results
|
|
bs: int, default bs=1, bs % num_gpus == 0
|
|
'''
|
|
|
|
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
|
|
out_path = Path(out_path) if not isinstance(out_path, Path) else out_path
|
|
|
|
if not out_path.exists():
|
|
out_path.mkdir(parents=True)
|
|
|
|
if in_path.is_dir():
|
|
data_config = {'type': 'base',
|
|
'params': {'dir_path': str(in_path),
|
|
'transform_type': 'default',
|
|
'transform_kwargs': {
|
|
'mean': 0.0,
|
|
'std': 1.0,
|
|
},
|
|
'need_path': True,
|
|
'recursive': False,
|
|
'length': None,
|
|
}
|
|
}
|
|
dataset = create_dataset(data_config)
|
|
self.write_log(f'Find {len(dataset)} images in {in_path}')
|
|
dataloader = torch.utils.data.DataLoader(
|
|
dataset, batch_size=bs, shuffle=False, drop_last=False,
|
|
)
|
|
for data in dataloader:
|
|
res = self.sample_func(data['lq'].cuda())
|
|
|
|
for jj in range(res.shape[0]):
|
|
im_name = Path(data['path'][jj]).stem
|
|
save_path = str(out_path / f"{im_name}.png")
|
|
util_image.imwrite(res[jj], save_path, dtype_in='float32')
|
|
else:
|
|
im_cond = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c
|
|
im_cond = util_image.img2tensor(im_cond).cuda() # 1 x c x h x w
|
|
|
|
image = self.sample_func(im_cond).squeeze(0)
|
|
|
|
save_path = str(out_path / f"{in_path.stem}.png")
|
|
util_image.imwrite(image, save_path, dtype_in='float32')
|
|
|
|
self.write_log(f"Processing done, enjoy the results in {str(out_path)}")
|
|
|
|
def get_torch_dtype(torch_dtype: str):
|
|
if torch_dtype == 'torch.float16':
|
|
return torch.float16
|
|
elif torch_dtype == 'torch.bfloat16':
|
|
return torch.bfloat16
|
|
elif torch_dtype == 'torch.float32':
|
|
return torch.float32
|
|
else:
|
|
raise ValueError(f'Unexpected torch dtype:{torch_dtype}')
|
|
|
|
if __name__ == '__main__':
|
|
pass
|
|
|