first commit

This commit is contained in:
zsyOAOA
2024-12-11 18:46:36 +08:00
parent 9e65255d34
commit 27f2eb7dc3
847 changed files with 377076 additions and 2 deletions

View File

@@ -0,0 +1,107 @@
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2024-04-07 20:57:36
import os
import torch
import random
import argparse
import numpy as np
from omegaconf import OmegaConf
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parents[1]))
from basicsr.data.realesrgan_dataset import RealESRGANDataset
from utils import util_image
from utils import util_common
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--indir",
type=str,
default="/mnt/lustre/share/zhangwenwei/data/imagenet/val",
help="Folder to save the checkpoints and training log",
)
parser.add_argument(
"-o",
"--outdir",
type=str,
default="./ImageNet-Test",
help="Folder to save the checkpoints and training log",
)
parser.add_argument(
"-r",
"--resolution",
type=int,
default=1024,
help="Image resolution of the ground truth",
)
parser.add_argument(
"--num_imgs",
type=int,
default=-1,
help="Number of images.",
)
args = parser.parse_args()
if Path(args.indir).is_dir():
img_list = sorted([x for x in Path(args.indir).glob('*.[JjPp][PpNn]*[Gg]')])
elif args.indir.endswith('txt'):
img_list = util_common.readline_txt(args.indir)
else:
raise ValueError('Please input valid args.indir!')
print(f'Number of images in the input folder: {len(img_list)}')
random.seed(10000)
random.shuffle(img_list)
num_imgs = args.num_imgs
if num_imgs > 0:
assert num_imgs <= len(img_list)
img_list = random.sample(img_list, k=num_imgs)
gt_dir = Path(args.outdir) / 'gt'
if not gt_dir.exists():
gt_dir.mkdir(parents=True)
lq_dir = Path(args.outdir) / 'lq'
if not lq_dir.exists():
lq_dir.mkdir(parents=True)
# Loading configuration
configs = OmegaConf.load('./configs/degradation_testing_realesrgan.yaml')
opts, opts_degradation = configs.opts, configs.degradation
opts['gt_size'] = args.resolution
opts_degradation['gt_size'] = args.resolution
dataset = RealESRGANDataset(opts, mode='testing')
dataset.image_paths = img_list
dataset.text_paths = [None, ] * len(img_list)
dataset.moment_paths = [None, ] * len(img_list)
for ii in range(len(img_list)):
data_dict1 = dataset.__getitem__(ii)
if (ii + 1) % 100 == 0:
print(f'Processing: {ii+1}/{len(img_list)}')
prefix = 'realesrgan'
data_dict2 = dataset.degrade_fun(
opts_degradation,
im_gt=data_dict1['gt'].unsqueeze(0),
kernel1=data_dict1['kernel1'],
kernel2=data_dict1['kernel2'],
sinc_kernel=data_dict1['sinc_kernel'],
)
im_lq, im_gt = data_dict2['lq'], data_dict2['gt']
im_lq, im_gt = util_image.tensor2img([im_lq, im_gt], rgb2bgr=True, min_max=(0,1) ) # uint8
im_name = Path(data_dict1['gt_path']).stem
im_path_gt = gt_dir / f'{im_name}.png'
util_image.imwrite(im_gt, im_path_gt, chn='bgr', dtype_in='uint8')
im_path_lq = lq_dir / f'{im_name}.png'
util_image.imwrite(im_lq, im_path_lq, chn='bgr', dtype_in='uint8')
if __name__ == "__main__":
main()