mirror of
https://github.com/aljazceru/InvSR.git
synced 2025-12-17 06:14:22 +01:00
first commit
This commit is contained in:
293
basicsr/utils/realesrgan_utils.py
Normal file
293
basicsr/utils/realesrgan_utils.py
Normal file
@@ -0,0 +1,293 @@
|
||||
import cv2
|
||||
import math
|
||||
import numpy as np
|
||||
import os
|
||||
import queue
|
||||
import threading
|
||||
import torch
|
||||
from basicsr.utils.download_util import load_file_from_url
|
||||
from torch.nn import functional as F
|
||||
|
||||
# ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
|
||||
class RealESRGANer():
|
||||
"""A helper class for upsampling images with RealESRGAN.
|
||||
|
||||
Args:
|
||||
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
||||
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
||||
model (nn.Module): The defined network. Default: None.
|
||||
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
||||
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
||||
0 denotes for do not use tile. Default: 0.
|
||||
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
||||
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
||||
half (float): Whether to use half precision during inference. Default: False.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
scale,
|
||||
model_path,
|
||||
model=None,
|
||||
tile=0,
|
||||
tile_pad=10,
|
||||
pre_pad=10,
|
||||
half=False,
|
||||
device=None,
|
||||
gpu_id=None):
|
||||
self.scale = scale
|
||||
self.tile_size = tile
|
||||
self.tile_pad = tile_pad
|
||||
self.pre_pad = pre_pad
|
||||
self.mod_scale = None
|
||||
self.half = half
|
||||
|
||||
# initialize model
|
||||
if gpu_id:
|
||||
self.device = torch.device(
|
||||
f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
|
||||
else:
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
||||
# if the model_path starts with https, it will first download models to the folder: realesrgan/weights
|
||||
if model_path.startswith('https://'):
|
||||
model_path = load_file_from_url(
|
||||
url=model_path, model_dir=os.path.join('weights/realesrgan'), progress=True, file_name=None)
|
||||
loadnet = torch.load(model_path, map_location=torch.device('cpu'))
|
||||
# prefer to use params_ema
|
||||
if 'params_ema' in loadnet:
|
||||
keyname = 'params_ema'
|
||||
else:
|
||||
keyname = 'params'
|
||||
model.load_state_dict(loadnet[keyname], strict=True)
|
||||
model.eval()
|
||||
self.model = model.to(self.device)
|
||||
if self.half:
|
||||
self.model = self.model.half()
|
||||
|
||||
def pre_process(self, img):
|
||||
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible
|
||||
"""
|
||||
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
||||
self.img = img.unsqueeze(0).to(self.device)
|
||||
if self.half:
|
||||
self.img = self.img.half()
|
||||
|
||||
# pre_pad
|
||||
if self.pre_pad != 0:
|
||||
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
||||
# mod pad for divisible borders
|
||||
if self.scale == 2:
|
||||
self.mod_scale = 2
|
||||
elif self.scale == 1:
|
||||
self.mod_scale = 4
|
||||
if self.mod_scale is not None:
|
||||
self.mod_pad_h, self.mod_pad_w = 0, 0
|
||||
_, _, h, w = self.img.size()
|
||||
if (h % self.mod_scale != 0):
|
||||
self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
|
||||
if (w % self.mod_scale != 0):
|
||||
self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
|
||||
self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
|
||||
|
||||
def process(self):
|
||||
# model inference
|
||||
self.output = self.model(self.img)
|
||||
|
||||
def tile_process(self):
|
||||
"""It will first crop input images to tiles, and then process each tile.
|
||||
Finally, all the processed tiles are merged into one images.
|
||||
|
||||
Modified from: https://github.com/ata4/esrgan-launcher
|
||||
"""
|
||||
batch, channel, height, width = self.img.shape
|
||||
output_height = height * self.scale
|
||||
output_width = width * self.scale
|
||||
output_shape = (batch, channel, output_height, output_width)
|
||||
|
||||
# start with black image
|
||||
self.output = self.img.new_zeros(output_shape)
|
||||
tiles_x = math.ceil(width / self.tile_size)
|
||||
tiles_y = math.ceil(height / self.tile_size)
|
||||
|
||||
# loop over all tiles
|
||||
for y in range(tiles_y):
|
||||
for x in range(tiles_x):
|
||||
# extract tile from input image
|
||||
ofs_x = x * self.tile_size
|
||||
ofs_y = y * self.tile_size
|
||||
# input tile area on total image
|
||||
input_start_x = ofs_x
|
||||
input_end_x = min(ofs_x + self.tile_size, width)
|
||||
input_start_y = ofs_y
|
||||
input_end_y = min(ofs_y + self.tile_size, height)
|
||||
|
||||
# input tile area on total image with padding
|
||||
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
||||
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
||||
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
||||
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
||||
|
||||
# input tile dimensions
|
||||
input_tile_width = input_end_x - input_start_x
|
||||
input_tile_height = input_end_y - input_start_y
|
||||
tile_idx = y * tiles_x + x + 1
|
||||
input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
|
||||
|
||||
# upscale tile
|
||||
try:
|
||||
with torch.no_grad():
|
||||
output_tile = self.model(input_tile)
|
||||
except RuntimeError as error:
|
||||
print('Error', error)
|
||||
# print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')
|
||||
|
||||
# output tile area on total image
|
||||
output_start_x = input_start_x * self.scale
|
||||
output_end_x = input_end_x * self.scale
|
||||
output_start_y = input_start_y * self.scale
|
||||
output_end_y = input_end_y * self.scale
|
||||
|
||||
# output tile area without padding
|
||||
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
||||
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
||||
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
||||
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
||||
|
||||
# put tile into output image
|
||||
self.output[:, :, output_start_y:output_end_y,
|
||||
output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
|
||||
output_start_x_tile:output_end_x_tile]
|
||||
|
||||
def post_process(self):
|
||||
# remove extra pad
|
||||
if self.mod_scale is not None:
|
||||
_, _, h, w = self.output.size()
|
||||
self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
|
||||
# remove prepad
|
||||
if self.pre_pad != 0:
|
||||
_, _, h, w = self.output.size()
|
||||
self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
|
||||
return self.output
|
||||
|
||||
@torch.no_grad()
|
||||
def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
|
||||
h_input, w_input = img.shape[0:2]
|
||||
# img: numpy
|
||||
img = img.astype(np.float32)
|
||||
if np.max(img) > 256: # 16-bit image
|
||||
max_range = 65535
|
||||
print('\tInput is a 16-bit image')
|
||||
else:
|
||||
max_range = 255
|
||||
img = img / max_range
|
||||
if len(img.shape) == 2: # gray image
|
||||
img_mode = 'L'
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
||||
elif img.shape[2] == 4: # RGBA image with alpha channel
|
||||
img_mode = 'RGBA'
|
||||
alpha = img[:, :, 3]
|
||||
img = img[:, :, 0:3]
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
if alpha_upsampler == 'realesrgan':
|
||||
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
||||
else:
|
||||
img_mode = 'RGB'
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# ------------------- process image (without the alpha channel) ------------------- #
|
||||
self.pre_process(img)
|
||||
if self.tile_size > 0:
|
||||
self.tile_process()
|
||||
else:
|
||||
self.process()
|
||||
output_img = self.post_process()
|
||||
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
||||
if img_mode == 'L':
|
||||
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# ------------------- process the alpha channel if necessary ------------------- #
|
||||
if img_mode == 'RGBA':
|
||||
if alpha_upsampler == 'realesrgan':
|
||||
self.pre_process(alpha)
|
||||
if self.tile_size > 0:
|
||||
self.tile_process()
|
||||
else:
|
||||
self.process()
|
||||
output_alpha = self.post_process()
|
||||
output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
||||
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
||||
else: # use the cv2 resize for alpha channel
|
||||
h, w = alpha.shape[0:2]
|
||||
output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# merge the alpha channel
|
||||
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
||||
output_img[:, :, 3] = output_alpha
|
||||
|
||||
# ------------------------------ return ------------------------------ #
|
||||
if max_range == 65535: # 16-bit image
|
||||
output = (output_img * 65535.0).round().astype(np.uint16)
|
||||
else:
|
||||
output = (output_img * 255.0).round().astype(np.uint8)
|
||||
|
||||
if outscale is not None and outscale != float(self.scale):
|
||||
output = cv2.resize(
|
||||
output, (
|
||||
int(w_input * outscale),
|
||||
int(h_input * outscale),
|
||||
), interpolation=cv2.INTER_LANCZOS4)
|
||||
|
||||
return output, img_mode
|
||||
|
||||
|
||||
class PrefetchReader(threading.Thread):
|
||||
"""Prefetch images.
|
||||
|
||||
Args:
|
||||
img_list (list[str]): A image list of image paths to be read.
|
||||
num_prefetch_queue (int): Number of prefetch queue.
|
||||
"""
|
||||
|
||||
def __init__(self, img_list, num_prefetch_queue):
|
||||
super().__init__()
|
||||
self.que = queue.Queue(num_prefetch_queue)
|
||||
self.img_list = img_list
|
||||
|
||||
def run(self):
|
||||
for img_path in self.img_list:
|
||||
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
||||
self.que.put(img)
|
||||
|
||||
self.que.put(None)
|
||||
|
||||
def __next__(self):
|
||||
next_item = self.que.get()
|
||||
if next_item is None:
|
||||
raise StopIteration
|
||||
return next_item
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
|
||||
class IOConsumer(threading.Thread):
|
||||
|
||||
def __init__(self, opt, que, qid):
|
||||
super().__init__()
|
||||
self._queue = que
|
||||
self.qid = qid
|
||||
self.opt = opt
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
msg = self._queue.get()
|
||||
if isinstance(msg, str) and msg == 'quit':
|
||||
break
|
||||
|
||||
output = msg['output']
|
||||
save_path = msg['save_path']
|
||||
cv2.imwrite(save_path, output)
|
||||
print(f'IO worker {self.qid} is done.')
|
||||
Reference in New Issue
Block a user