mirror of
https://github.com/aljazceru/InvSR.git
synced 2025-12-17 06:14:22 +01:00
first commit
This commit is contained in:
208
basicsr/utils/color_util.py
Normal file
208
basicsr/utils/color_util.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def rgb2ycbcr(img, y_only=False):
|
||||
"""Convert a RGB image to YCbCr image.
|
||||
|
||||
This function produces the same results as Matlab's `rgb2ycbcr` function.
|
||||
It implements the ITU-R BT.601 conversion for standard-definition
|
||||
television. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
||||
|
||||
It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
|
||||
In OpenCV, it implements a JPEG conversion. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
||||
|
||||
Args:
|
||||
img (ndarray): The input image. It accepts:
|
||||
1. np.uint8 type with range [0, 255];
|
||||
2. np.float32 type with range [0, 1].
|
||||
y_only (bool): Whether to only return Y channel. Default: False.
|
||||
|
||||
Returns:
|
||||
ndarray: The converted YCbCr image. The output image has the same type
|
||||
and range as input image.
|
||||
"""
|
||||
img_type = img.dtype
|
||||
img = _convert_input_type_range(img)
|
||||
if y_only:
|
||||
out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
|
||||
else:
|
||||
out_img = np.matmul(
|
||||
img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128]
|
||||
out_img = _convert_output_type_range(out_img, img_type)
|
||||
return out_img
|
||||
|
||||
|
||||
def bgr2ycbcr(img, y_only=False):
|
||||
"""Convert a BGR image to YCbCr image.
|
||||
|
||||
The bgr version of rgb2ycbcr.
|
||||
It implements the ITU-R BT.601 conversion for standard-definition
|
||||
television. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
||||
|
||||
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
|
||||
In OpenCV, it implements a JPEG conversion. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
||||
|
||||
Args:
|
||||
img (ndarray): The input image. It accepts:
|
||||
1. np.uint8 type with range [0, 255];
|
||||
2. np.float32 type with range [0, 1].
|
||||
y_only (bool): Whether to only return Y channel. Default: False.
|
||||
|
||||
Returns:
|
||||
ndarray: The converted YCbCr image. The output image has the same type
|
||||
and range as input image.
|
||||
"""
|
||||
img_type = img.dtype
|
||||
img = _convert_input_type_range(img)
|
||||
if y_only:
|
||||
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
|
||||
else:
|
||||
out_img = np.matmul(
|
||||
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
|
||||
out_img = _convert_output_type_range(out_img, img_type)
|
||||
return out_img
|
||||
|
||||
|
||||
def ycbcr2rgb(img):
|
||||
"""Convert a YCbCr image to RGB image.
|
||||
|
||||
This function produces the same results as Matlab's ycbcr2rgb function.
|
||||
It implements the ITU-R BT.601 conversion for standard-definition
|
||||
television. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
||||
|
||||
It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
|
||||
In OpenCV, it implements a JPEG conversion. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
||||
|
||||
Args:
|
||||
img (ndarray): The input image. It accepts:
|
||||
1. np.uint8 type with range [0, 255];
|
||||
2. np.float32 type with range [0, 1].
|
||||
|
||||
Returns:
|
||||
ndarray: The converted RGB image. The output image has the same type
|
||||
and range as input image.
|
||||
"""
|
||||
img_type = img.dtype
|
||||
img = _convert_input_type_range(img) * 255
|
||||
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
||||
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] # noqa: E126
|
||||
out_img = _convert_output_type_range(out_img, img_type)
|
||||
return out_img
|
||||
|
||||
|
||||
def ycbcr2bgr(img):
|
||||
"""Convert a YCbCr image to BGR image.
|
||||
|
||||
The bgr version of ycbcr2rgb.
|
||||
It implements the ITU-R BT.601 conversion for standard-definition
|
||||
television. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
||||
|
||||
It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
|
||||
In OpenCV, it implements a JPEG conversion. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
||||
|
||||
Args:
|
||||
img (ndarray): The input image. It accepts:
|
||||
1. np.uint8 type with range [0, 255];
|
||||
2. np.float32 type with range [0, 1].
|
||||
|
||||
Returns:
|
||||
ndarray: The converted BGR image. The output image has the same type
|
||||
and range as input image.
|
||||
"""
|
||||
img_type = img.dtype
|
||||
img = _convert_input_type_range(img) * 255
|
||||
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0],
|
||||
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921] # noqa: E126
|
||||
out_img = _convert_output_type_range(out_img, img_type)
|
||||
return out_img
|
||||
|
||||
|
||||
def _convert_input_type_range(img):
|
||||
"""Convert the type and range of the input image.
|
||||
|
||||
It converts the input image to np.float32 type and range of [0, 1].
|
||||
It is mainly used for pre-processing the input image in colorspace
|
||||
conversion functions such as rgb2ycbcr and ycbcr2rgb.
|
||||
|
||||
Args:
|
||||
img (ndarray): The input image. It accepts:
|
||||
1. np.uint8 type with range [0, 255];
|
||||
2. np.float32 type with range [0, 1].
|
||||
|
||||
Returns:
|
||||
(ndarray): The converted image with type of np.float32 and range of
|
||||
[0, 1].
|
||||
"""
|
||||
img_type = img.dtype
|
||||
img = img.astype(np.float32)
|
||||
if img_type == np.float32:
|
||||
pass
|
||||
elif img_type == np.uint8:
|
||||
img /= 255.
|
||||
else:
|
||||
raise TypeError(f'The img type should be np.float32 or np.uint8, but got {img_type}')
|
||||
return img
|
||||
|
||||
|
||||
def _convert_output_type_range(img, dst_type):
|
||||
"""Convert the type and range of the image according to dst_type.
|
||||
|
||||
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
||||
images will be converted to np.uint8 type with range [0, 255]. If
|
||||
`dst_type` is np.float32, it converts the image to np.float32 type with
|
||||
range [0, 1].
|
||||
It is mainly used for post-processing images in colorspace conversion
|
||||
functions such as rgb2ycbcr and ycbcr2rgb.
|
||||
|
||||
Args:
|
||||
img (ndarray): The image to be converted with np.float32 type and
|
||||
range [0, 255].
|
||||
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
||||
converts the image to np.uint8 type with range [0, 255]. If
|
||||
dst_type is np.float32, it converts the image to np.float32 type
|
||||
with range [0, 1].
|
||||
|
||||
Returns:
|
||||
(ndarray): The converted image with desired type and range.
|
||||
"""
|
||||
if dst_type not in (np.uint8, np.float32):
|
||||
raise TypeError(f'The dst_type should be np.float32 or np.uint8, but got {dst_type}')
|
||||
if dst_type == np.uint8:
|
||||
img = img.round()
|
||||
else:
|
||||
img /= 255.
|
||||
return img.astype(dst_type)
|
||||
|
||||
|
||||
def rgb2ycbcr_pt(img, y_only=False):
|
||||
"""Convert RGB images to YCbCr images (PyTorch version).
|
||||
|
||||
It implements the ITU-R BT.601 conversion for standard-definition television. See more details in
|
||||
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
||||
|
||||
Args:
|
||||
img (Tensor): Images with shape (n, 3, h, w), the range [0, 1], float, RGB format.
|
||||
y_only (bool): Whether to only return Y channel. Default: False.
|
||||
|
||||
Returns:
|
||||
(Tensor): converted images with the shape (n, 3/1, h, w), the range [0, 1], float.
|
||||
"""
|
||||
if y_only:
|
||||
weight = torch.tensor([[65.481], [128.553], [24.966]]).to(img)
|
||||
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
|
||||
else:
|
||||
weight = torch.tensor([[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]).to(img)
|
||||
bias = torch.tensor([16, 128, 128]).view(1, 3, 1, 1).to(img)
|
||||
out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias
|
||||
|
||||
out_img = out_img / 255.
|
||||
return out_img
|
||||
Reference in New Issue
Block a user