mirror of
https://github.com/aljazceru/InvSR.git
synced 2025-12-17 06:14:22 +01:00
first commit
This commit is contained in:
199
basicsr/data/vimeo90k_dataset.py
Normal file
199
basicsr/data/vimeo90k_dataset.py
Normal file
@@ -0,0 +1,199 @@
|
||||
import random
|
||||
import torch
|
||||
from pathlib import Path
|
||||
from torch.utils import data as data
|
||||
|
||||
from basicsr.data.transforms import augment, paired_random_crop
|
||||
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
||||
from basicsr.utils.registry import DATASET_REGISTRY
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class Vimeo90KDataset(data.Dataset):
|
||||
"""Vimeo90K dataset for training.
|
||||
|
||||
The keys are generated from a meta info txt file.
|
||||
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
|
||||
|
||||
Each line contains the following items, separated by a white space.
|
||||
|
||||
1. clip name;
|
||||
2. frame number;
|
||||
3. image shape
|
||||
|
||||
Examples:
|
||||
|
||||
::
|
||||
|
||||
00001/0001 7 (256,448,3)
|
||||
00001/0002 7 (256,448,3)
|
||||
|
||||
- Key examples: "00001/0001"
|
||||
- GT (gt): Ground-Truth;
|
||||
- LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
|
||||
|
||||
The neighboring frame list for different num_frame:
|
||||
|
||||
::
|
||||
|
||||
num_frame | frame list
|
||||
1 | 4
|
||||
3 | 3,4,5
|
||||
5 | 2,3,4,5,6
|
||||
7 | 1,2,3,4,5,6,7
|
||||
|
||||
Args:
|
||||
opt (dict): Config for train dataset. It contains the following keys:
|
||||
dataroot_gt (str): Data root path for gt.
|
||||
dataroot_lq (str): Data root path for lq.
|
||||
meta_info_file (str): Path for meta information file.
|
||||
io_backend (dict): IO backend type and other kwarg.
|
||||
num_frame (int): Window size for input frames.
|
||||
gt_size (int): Cropped patched size for gt patches.
|
||||
random_reverse (bool): Random reverse input frames.
|
||||
use_hflip (bool): Use horizontal flips.
|
||||
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
|
||||
scale (bool): Scale, which will be added automatically.
|
||||
"""
|
||||
|
||||
def __init__(self, opt):
|
||||
super(Vimeo90KDataset, self).__init__()
|
||||
self.opt = opt
|
||||
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
|
||||
|
||||
with open(opt['meta_info_file'], 'r') as fin:
|
||||
self.keys = [line.split(' ')[0] for line in fin]
|
||||
|
||||
# file client (io backend)
|
||||
self.file_client = None
|
||||
self.io_backend_opt = opt['io_backend']
|
||||
self.is_lmdb = False
|
||||
if self.io_backend_opt['type'] == 'lmdb':
|
||||
self.is_lmdb = True
|
||||
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
|
||||
self.io_backend_opt['client_keys'] = ['lq', 'gt']
|
||||
|
||||
# indices of input images
|
||||
self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]
|
||||
|
||||
# temporal augmentation configs
|
||||
self.random_reverse = opt['random_reverse']
|
||||
logger = get_root_logger()
|
||||
logger.info(f'Random reverse is {self.random_reverse}.')
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.file_client is None:
|
||||
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
||||
|
||||
# random reverse
|
||||
if self.random_reverse and random.random() < 0.5:
|
||||
self.neighbor_list.reverse()
|
||||
|
||||
scale = self.opt['scale']
|
||||
gt_size = self.opt['gt_size']
|
||||
key = self.keys[index]
|
||||
clip, seq = key.split('/') # key example: 00001/0001
|
||||
|
||||
# get the GT frame (im4.png)
|
||||
if self.is_lmdb:
|
||||
img_gt_path = f'{key}/im4'
|
||||
else:
|
||||
img_gt_path = self.gt_root / clip / seq / 'im4.png'
|
||||
img_bytes = self.file_client.get(img_gt_path, 'gt')
|
||||
img_gt = imfrombytes(img_bytes, float32=True)
|
||||
|
||||
# get the neighboring LQ frames
|
||||
img_lqs = []
|
||||
for neighbor in self.neighbor_list:
|
||||
if self.is_lmdb:
|
||||
img_lq_path = f'{clip}/{seq}/im{neighbor}'
|
||||
else:
|
||||
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
|
||||
img_bytes = self.file_client.get(img_lq_path, 'lq')
|
||||
img_lq = imfrombytes(img_bytes, float32=True)
|
||||
img_lqs.append(img_lq)
|
||||
|
||||
# randomly crop
|
||||
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
|
||||
|
||||
# augmentation - flip, rotate
|
||||
img_lqs.append(img_gt)
|
||||
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
|
||||
|
||||
img_results = img2tensor(img_results)
|
||||
img_lqs = torch.stack(img_results[0:-1], dim=0)
|
||||
img_gt = img_results[-1]
|
||||
|
||||
# img_lqs: (t, c, h, w)
|
||||
# img_gt: (c, h, w)
|
||||
# key: str
|
||||
return {'lq': img_lqs, 'gt': img_gt, 'key': key}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.keys)
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class Vimeo90KRecurrentDataset(Vimeo90KDataset):
|
||||
|
||||
def __init__(self, opt):
|
||||
super(Vimeo90KRecurrentDataset, self).__init__(opt)
|
||||
|
||||
self.flip_sequence = opt['flip_sequence']
|
||||
self.neighbor_list = [1, 2, 3, 4, 5, 6, 7]
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.file_client is None:
|
||||
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
||||
|
||||
# random reverse
|
||||
if self.random_reverse and random.random() < 0.5:
|
||||
self.neighbor_list.reverse()
|
||||
|
||||
scale = self.opt['scale']
|
||||
gt_size = self.opt['gt_size']
|
||||
key = self.keys[index]
|
||||
clip, seq = key.split('/') # key example: 00001/0001
|
||||
|
||||
# get the neighboring LQ and GT frames
|
||||
img_lqs = []
|
||||
img_gts = []
|
||||
for neighbor in self.neighbor_list:
|
||||
if self.is_lmdb:
|
||||
img_lq_path = f'{clip}/{seq}/im{neighbor}'
|
||||
img_gt_path = f'{clip}/{seq}/im{neighbor}'
|
||||
else:
|
||||
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
|
||||
img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png'
|
||||
# LQ
|
||||
img_bytes = self.file_client.get(img_lq_path, 'lq')
|
||||
img_lq = imfrombytes(img_bytes, float32=True)
|
||||
# GT
|
||||
img_bytes = self.file_client.get(img_gt_path, 'gt')
|
||||
img_gt = imfrombytes(img_bytes, float32=True)
|
||||
|
||||
img_lqs.append(img_lq)
|
||||
img_gts.append(img_gt)
|
||||
|
||||
# randomly crop
|
||||
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
|
||||
|
||||
# augmentation - flip, rotate
|
||||
img_lqs.extend(img_gts)
|
||||
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
|
||||
|
||||
img_results = img2tensor(img_results)
|
||||
img_lqs = torch.stack(img_results[:7], dim=0)
|
||||
img_gts = torch.stack(img_results[7:], dim=0)
|
||||
|
||||
if self.flip_sequence: # flip the sequence: 7 frames to 14 frames
|
||||
img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0)
|
||||
img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0)
|
||||
|
||||
# img_lqs: (t, c, h, w)
|
||||
# img_gt: (c, h, w)
|
||||
# key: str
|
||||
return {'lq': img_lqs, 'gt': img_gts, 'key': key}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.keys)
|
||||
Reference in New Issue
Block a user