mirror of
https://github.com/aljazceru/InvSR.git
synced 2025-12-17 06:14:22 +01:00
first commit
This commit is contained in:
283
basicsr/data/video_test_dataset.py
Normal file
283
basicsr/data/video_test_dataset.py
Normal file
@@ -0,0 +1,283 @@
|
||||
import glob
|
||||
import torch
|
||||
from os import path as osp
|
||||
from torch.utils import data as data
|
||||
|
||||
from basicsr.data.data_util import duf_downsample, generate_frame_indices, read_img_seq
|
||||
from basicsr.utils import get_root_logger, scandir
|
||||
from basicsr.utils.registry import DATASET_REGISTRY
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class VideoTestDataset(data.Dataset):
|
||||
"""Video test dataset.
|
||||
|
||||
Supported datasets: Vid4, REDS4, REDSofficial.
|
||||
More generally, it supports testing dataset with following structures:
|
||||
|
||||
::
|
||||
|
||||
dataroot
|
||||
├── subfolder1
|
||||
├── frame000
|
||||
├── frame001
|
||||
├── ...
|
||||
├── subfolder2
|
||||
├── frame000
|
||||
├── frame001
|
||||
├── ...
|
||||
├── ...
|
||||
|
||||
For testing datasets, there is no need to prepare LMDB files.
|
||||
|
||||
Args:
|
||||
opt (dict): Config for train dataset. It contains the following keys:
|
||||
dataroot_gt (str): Data root path for gt.
|
||||
dataroot_lq (str): Data root path for lq.
|
||||
io_backend (dict): IO backend type and other kwarg.
|
||||
cache_data (bool): Whether to cache testing datasets.
|
||||
name (str): Dataset name.
|
||||
meta_info_file (str): The path to the file storing the list of test folders. If not provided, all the folders
|
||||
in the dataroot will be used.
|
||||
num_frame (int): Window size for input frames.
|
||||
padding (str): Padding mode.
|
||||
"""
|
||||
|
||||
def __init__(self, opt):
|
||||
super(VideoTestDataset, self).__init__()
|
||||
self.opt = opt
|
||||
self.cache_data = opt['cache_data']
|
||||
self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq']
|
||||
self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []}
|
||||
# file client (io backend)
|
||||
self.file_client = None
|
||||
self.io_backend_opt = opt['io_backend']
|
||||
assert self.io_backend_opt['type'] != 'lmdb', 'No need to use lmdb during validation/test.'
|
||||
|
||||
logger = get_root_logger()
|
||||
logger.info(f'Generate data info for VideoTestDataset - {opt["name"]}')
|
||||
self.imgs_lq, self.imgs_gt = {}, {}
|
||||
if 'meta_info_file' in opt:
|
||||
with open(opt['meta_info_file'], 'r') as fin:
|
||||
subfolders = [line.split(' ')[0] for line in fin]
|
||||
subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders]
|
||||
subfolders_gt = [osp.join(self.gt_root, key) for key in subfolders]
|
||||
else:
|
||||
subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*')))
|
||||
subfolders_gt = sorted(glob.glob(osp.join(self.gt_root, '*')))
|
||||
|
||||
if opt['name'].lower() in ['vid4', 'reds4', 'redsofficial']:
|
||||
for subfolder_lq, subfolder_gt in zip(subfolders_lq, subfolders_gt):
|
||||
# get frame list for lq and gt
|
||||
subfolder_name = osp.basename(subfolder_lq)
|
||||
img_paths_lq = sorted(list(scandir(subfolder_lq, full_path=True)))
|
||||
img_paths_gt = sorted(list(scandir(subfolder_gt, full_path=True)))
|
||||
|
||||
max_idx = len(img_paths_lq)
|
||||
assert max_idx == len(img_paths_gt), (f'Different number of images in lq ({max_idx})'
|
||||
f' and gt folders ({len(img_paths_gt)})')
|
||||
|
||||
self.data_info['lq_path'].extend(img_paths_lq)
|
||||
self.data_info['gt_path'].extend(img_paths_gt)
|
||||
self.data_info['folder'].extend([subfolder_name] * max_idx)
|
||||
for i in range(max_idx):
|
||||
self.data_info['idx'].append(f'{i}/{max_idx}')
|
||||
border_l = [0] * max_idx
|
||||
for i in range(self.opt['num_frame'] // 2):
|
||||
border_l[i] = 1
|
||||
border_l[max_idx - i - 1] = 1
|
||||
self.data_info['border'].extend(border_l)
|
||||
|
||||
# cache data or save the frame list
|
||||
if self.cache_data:
|
||||
logger.info(f'Cache {subfolder_name} for VideoTestDataset...')
|
||||
self.imgs_lq[subfolder_name] = read_img_seq(img_paths_lq)
|
||||
self.imgs_gt[subfolder_name] = read_img_seq(img_paths_gt)
|
||||
else:
|
||||
self.imgs_lq[subfolder_name] = img_paths_lq
|
||||
self.imgs_gt[subfolder_name] = img_paths_gt
|
||||
else:
|
||||
raise ValueError(f'Non-supported video test dataset: {type(opt["name"])}')
|
||||
|
||||
def __getitem__(self, index):
|
||||
folder = self.data_info['folder'][index]
|
||||
idx, max_idx = self.data_info['idx'][index].split('/')
|
||||
idx, max_idx = int(idx), int(max_idx)
|
||||
border = self.data_info['border'][index]
|
||||
lq_path = self.data_info['lq_path'][index]
|
||||
|
||||
select_idx = generate_frame_indices(idx, max_idx, self.opt['num_frame'], padding=self.opt['padding'])
|
||||
|
||||
if self.cache_data:
|
||||
imgs_lq = self.imgs_lq[folder].index_select(0, torch.LongTensor(select_idx))
|
||||
img_gt = self.imgs_gt[folder][idx]
|
||||
else:
|
||||
img_paths_lq = [self.imgs_lq[folder][i] for i in select_idx]
|
||||
imgs_lq = read_img_seq(img_paths_lq)
|
||||
img_gt = read_img_seq([self.imgs_gt[folder][idx]])
|
||||
img_gt.squeeze_(0)
|
||||
|
||||
return {
|
||||
'lq': imgs_lq, # (t, c, h, w)
|
||||
'gt': img_gt, # (c, h, w)
|
||||
'folder': folder, # folder name
|
||||
'idx': self.data_info['idx'][index], # e.g., 0/99
|
||||
'border': border, # 1 for border, 0 for non-border
|
||||
'lq_path': lq_path # center frame
|
||||
}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_info['gt_path'])
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class VideoTestVimeo90KDataset(data.Dataset):
|
||||
"""Video test dataset for Vimeo90k-Test dataset.
|
||||
|
||||
It only keeps the center frame for testing.
|
||||
For testing datasets, there is no need to prepare LMDB files.
|
||||
|
||||
Args:
|
||||
opt (dict): Config for train dataset. It contains the following keys:
|
||||
dataroot_gt (str): Data root path for gt.
|
||||
dataroot_lq (str): Data root path for lq.
|
||||
io_backend (dict): IO backend type and other kwarg.
|
||||
cache_data (bool): Whether to cache testing datasets.
|
||||
name (str): Dataset name.
|
||||
meta_info_file (str): The path to the file storing the list of test folders. If not provided, all the folders
|
||||
in the dataroot will be used.
|
||||
num_frame (int): Window size for input frames.
|
||||
padding (str): Padding mode.
|
||||
"""
|
||||
|
||||
def __init__(self, opt):
|
||||
super(VideoTestVimeo90KDataset, self).__init__()
|
||||
self.opt = opt
|
||||
self.cache_data = opt['cache_data']
|
||||
if self.cache_data:
|
||||
raise NotImplementedError('cache_data in Vimeo90K-Test dataset is not implemented.')
|
||||
self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq']
|
||||
self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []}
|
||||
neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]
|
||||
|
||||
# file client (io backend)
|
||||
self.file_client = None
|
||||
self.io_backend_opt = opt['io_backend']
|
||||
assert self.io_backend_opt['type'] != 'lmdb', 'No need to use lmdb during validation/test.'
|
||||
|
||||
logger = get_root_logger()
|
||||
logger.info(f'Generate data info for VideoTestDataset - {opt["name"]}')
|
||||
with open(opt['meta_info_file'], 'r') as fin:
|
||||
subfolders = [line.split(' ')[0] for line in fin]
|
||||
for idx, subfolder in enumerate(subfolders):
|
||||
gt_path = osp.join(self.gt_root, subfolder, 'im4.png')
|
||||
self.data_info['gt_path'].append(gt_path)
|
||||
lq_paths = [osp.join(self.lq_root, subfolder, f'im{i}.png') for i in neighbor_list]
|
||||
self.data_info['lq_path'].append(lq_paths)
|
||||
self.data_info['folder'].append('vimeo90k')
|
||||
self.data_info['idx'].append(f'{idx}/{len(subfolders)}')
|
||||
self.data_info['border'].append(0)
|
||||
|
||||
def __getitem__(self, index):
|
||||
lq_path = self.data_info['lq_path'][index]
|
||||
gt_path = self.data_info['gt_path'][index]
|
||||
imgs_lq = read_img_seq(lq_path)
|
||||
img_gt = read_img_seq([gt_path])
|
||||
img_gt.squeeze_(0)
|
||||
|
||||
return {
|
||||
'lq': imgs_lq, # (t, c, h, w)
|
||||
'gt': img_gt, # (c, h, w)
|
||||
'folder': self.data_info['folder'][index], # folder name
|
||||
'idx': self.data_info['idx'][index], # e.g., 0/843
|
||||
'border': self.data_info['border'][index], # 0 for non-border
|
||||
'lq_path': lq_path[self.opt['num_frame'] // 2] # center frame
|
||||
}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_info['gt_path'])
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class VideoTestDUFDataset(VideoTestDataset):
|
||||
""" Video test dataset for DUF dataset.
|
||||
|
||||
Args:
|
||||
opt (dict): Config for train dataset. Most of keys are the same as VideoTestDataset.
|
||||
It has the following extra keys:
|
||||
use_duf_downsampling (bool): Whether to use duf downsampling to generate low-resolution frames.
|
||||
scale (bool): Scale, which will be added automatically.
|
||||
"""
|
||||
|
||||
def __getitem__(self, index):
|
||||
folder = self.data_info['folder'][index]
|
||||
idx, max_idx = self.data_info['idx'][index].split('/')
|
||||
idx, max_idx = int(idx), int(max_idx)
|
||||
border = self.data_info['border'][index]
|
||||
lq_path = self.data_info['lq_path'][index]
|
||||
|
||||
select_idx = generate_frame_indices(idx, max_idx, self.opt['num_frame'], padding=self.opt['padding'])
|
||||
|
||||
if self.cache_data:
|
||||
if self.opt['use_duf_downsampling']:
|
||||
# read imgs_gt to generate low-resolution frames
|
||||
imgs_lq = self.imgs_gt[folder].index_select(0, torch.LongTensor(select_idx))
|
||||
imgs_lq = duf_downsample(imgs_lq, kernel_size=13, scale=self.opt['scale'])
|
||||
else:
|
||||
imgs_lq = self.imgs_lq[folder].index_select(0, torch.LongTensor(select_idx))
|
||||
img_gt = self.imgs_gt[folder][idx]
|
||||
else:
|
||||
if self.opt['use_duf_downsampling']:
|
||||
img_paths_lq = [self.imgs_gt[folder][i] for i in select_idx]
|
||||
# read imgs_gt to generate low-resolution frames
|
||||
imgs_lq = read_img_seq(img_paths_lq, require_mod_crop=True, scale=self.opt['scale'])
|
||||
imgs_lq = duf_downsample(imgs_lq, kernel_size=13, scale=self.opt['scale'])
|
||||
else:
|
||||
img_paths_lq = [self.imgs_lq[folder][i] for i in select_idx]
|
||||
imgs_lq = read_img_seq(img_paths_lq)
|
||||
img_gt = read_img_seq([self.imgs_gt[folder][idx]], require_mod_crop=True, scale=self.opt['scale'])
|
||||
img_gt.squeeze_(0)
|
||||
|
||||
return {
|
||||
'lq': imgs_lq, # (t, c, h, w)
|
||||
'gt': img_gt, # (c, h, w)
|
||||
'folder': folder, # folder name
|
||||
'idx': self.data_info['idx'][index], # e.g., 0/99
|
||||
'border': border, # 1 for border, 0 for non-border
|
||||
'lq_path': lq_path # center frame
|
||||
}
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class VideoRecurrentTestDataset(VideoTestDataset):
|
||||
"""Video test dataset for recurrent architectures, which takes LR video
|
||||
frames as input and output corresponding HR video frames.
|
||||
|
||||
Args:
|
||||
opt (dict): Same as VideoTestDataset. Unused opt:
|
||||
padding (str): Padding mode.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, opt):
|
||||
super(VideoRecurrentTestDataset, self).__init__(opt)
|
||||
# Find unique folder strings
|
||||
self.folders = sorted(list(set(self.data_info['folder'])))
|
||||
|
||||
def __getitem__(self, index):
|
||||
folder = self.folders[index]
|
||||
|
||||
if self.cache_data:
|
||||
imgs_lq = self.imgs_lq[folder]
|
||||
imgs_gt = self.imgs_gt[folder]
|
||||
else:
|
||||
raise NotImplementedError('Without cache_data is not implemented.')
|
||||
|
||||
return {
|
||||
'lq': imgs_lq,
|
||||
'gt': imgs_gt,
|
||||
'folder': folder,
|
||||
}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.folders)
|
||||
Reference in New Issue
Block a user