mirror of
https://github.com/aljazceru/InvSR.git
synced 2025-12-17 06:14:22 +01:00
first commit
This commit is contained in:
68
basicsr/data/single_image_dataset.py
Normal file
68
basicsr/data/single_image_dataset.py
Normal file
@@ -0,0 +1,68 @@
|
||||
from os import path as osp
|
||||
from torch.utils import data as data
|
||||
from torchvision.transforms.functional import normalize
|
||||
|
||||
from basicsr.data.data_util import paths_from_lmdb
|
||||
from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir
|
||||
from basicsr.utils.registry import DATASET_REGISTRY
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class SingleImageDataset(data.Dataset):
|
||||
"""Read only lq images in the test phase.
|
||||
|
||||
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc).
|
||||
|
||||
There are two modes:
|
||||
1. 'meta_info_file': Use meta information file to generate paths.
|
||||
2. 'folder': Scan folders to generate paths.
|
||||
|
||||
Args:
|
||||
opt (dict): Config for train datasets. It contains the following keys:
|
||||
dataroot_lq (str): Data root path for lq.
|
||||
meta_info_file (str): Path for meta information file.
|
||||
io_backend (dict): IO backend type and other kwarg.
|
||||
"""
|
||||
|
||||
def __init__(self, opt):
|
||||
super(SingleImageDataset, self).__init__()
|
||||
self.opt = opt
|
||||
# file client (io backend)
|
||||
self.file_client = None
|
||||
self.io_backend_opt = opt['io_backend']
|
||||
self.mean = opt['mean'] if 'mean' in opt else None
|
||||
self.std = opt['std'] if 'std' in opt else None
|
||||
self.lq_folder = opt['dataroot_lq']
|
||||
|
||||
if self.io_backend_opt['type'] == 'lmdb':
|
||||
self.io_backend_opt['db_paths'] = [self.lq_folder]
|
||||
self.io_backend_opt['client_keys'] = ['lq']
|
||||
self.paths = paths_from_lmdb(self.lq_folder)
|
||||
elif 'meta_info_file' in self.opt:
|
||||
with open(self.opt['meta_info_file'], 'r') as fin:
|
||||
self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin]
|
||||
else:
|
||||
self.paths = sorted(list(scandir(self.lq_folder, full_path=True)))
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.file_client is None:
|
||||
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
||||
|
||||
# load lq image
|
||||
lq_path = self.paths[index]
|
||||
img_bytes = self.file_client.get(lq_path, 'lq')
|
||||
img_lq = imfrombytes(img_bytes, float32=True)
|
||||
|
||||
# color space transform
|
||||
if 'color' in self.opt and self.opt['color'] == 'y':
|
||||
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
|
||||
|
||||
# BGR to RGB, HWC to CHW, numpy to tensor
|
||||
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
|
||||
# normalize
|
||||
if self.mean is not None or self.std is not None:
|
||||
normalize(img_lq, self.mean, self.std, inplace=True)
|
||||
return {'lq': img_lq, 'lq_path': lq_path}
|
||||
|
||||
def __len__(self):
|
||||
return len(self.paths)
|
||||
Reference in New Issue
Block a user