mirror of
https://github.com/aljazceru/InvSR.git
synced 2025-12-17 06:14:22 +01:00
first commit
This commit is contained in:
48
basicsr/data/data_sampler.py
Normal file
48
basicsr/data/data_sampler.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import math
|
||||
import torch
|
||||
from torch.utils.data.sampler import Sampler
|
||||
|
||||
|
||||
class EnlargedSampler(Sampler):
|
||||
"""Sampler that restricts data loading to a subset of the dataset.
|
||||
|
||||
Modified from torch.utils.data.distributed.DistributedSampler
|
||||
Support enlarging the dataset for iteration-based training, for saving
|
||||
time when restart the dataloader after each epoch
|
||||
|
||||
Args:
|
||||
dataset (torch.utils.data.Dataset): Dataset used for sampling.
|
||||
num_replicas (int | None): Number of processes participating in
|
||||
the training. It is usually the world_size.
|
||||
rank (int | None): Rank of the current process within num_replicas.
|
||||
ratio (int): Enlarging ratio. Default: 1.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, num_replicas, rank, ratio=1):
|
||||
self.dataset = dataset
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
self.epoch = 0
|
||||
self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
|
||||
self.total_size = self.num_samples * self.num_replicas
|
||||
|
||||
def __iter__(self):
|
||||
# deterministically shuffle based on epoch
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.epoch)
|
||||
indices = torch.randperm(self.total_size, generator=g).tolist()
|
||||
|
||||
dataset_size = len(self.dataset)
|
||||
indices = [v % dataset_size for v in indices]
|
||||
|
||||
# subsample
|
||||
indices = indices[self.rank:self.total_size:self.num_replicas]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
return iter(indices)
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
self.epoch = epoch
|
||||
Reference in New Issue
Block a user