Files
IngestRSS/monthly_ingestion.ipynb
Charles-Gormley 9dda7ff55a update
2024-11-30 23:26:17 -05:00

228 lines
5.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RSS Article Batch Download Examples\n",
"\n",
"This notebook demonstrates how to batch download RSS articles from S3."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"from time import time\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Root imports\n",
"\n",
"from src.search.batch import S3BatchDownloader\n",
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv(override=True)\n",
"\n",
"downloader = S3BatchDownloader()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize the Downloader"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"List permission: Allowed\n"
]
}
],
"source": [
"import boto3\n",
"from botocore.exceptions import ClientError\n",
"\n",
"s3 = boto3.client('s3')\n",
"\n",
"# Test ListObjects\n",
"try:\n",
" response = s3.list_objects_v2(Bucket=os.getenv(\"S3_BUCKET_NAME\"))\n",
" print(\"List permission: Allowed\")\n",
"except ClientError as e:\n",
" print(\"List permission: Denied\")\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 59592 objects to process\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 53%|█████▎ | 31707/59592 [04:33<6:08:33, 1.26object/s]IOStream.flush timed out\n",
"100%|██████████| 59592/59592 [08:38<00:00, 114.83object/s] \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloaded data to November-1.csv in 605.81 seconds\n"
]
}
],
"source": [
"start = time()\n",
"output_path = \"November-1.csv\" # or \"consolidated_data.json\"\n",
"\n",
"# Define date range\n",
"start_date = \"2024-11-17\" # FIXME: Fix the error where data can't be collected before the date you started collecting.\n",
"end_date = \"2024-11-22\"\n",
"\n",
"# Start downloading\n",
"downloader.download_to_file(\n",
" output_path=output_path,\n",
" file_format=\"csv\", # or \"json\"\n",
" start_date=start_date,\n",
" end_date=end_date\n",
")\n",
"\n",
"print(f\"Downloaded data to {output_path} in {time() - start:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 50037 objects to process\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" 66%|██████▌ | 33067/50037 [04:07<11:49, 23.92object/s] IOStream.flush timed out\n",
"100%|██████████| 50037/50037 [07:11<00:00, 116.06object/s] \n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloaded data to November-2.csv in 539.74 seconds\n"
]
}
],
"source": [
"start = time()\n",
"output_path = \"November-2.csv\" # or \"consolidated_data.json\"\n",
"\n",
"# Define date range\n",
"start_date = \"2024-11-23\" # FIXME: Fix the error where data can't be collected before the date you started collecting.\n",
"end_date = \"2024-11-27\"\n",
"\n",
"# Start downloading\n",
"downloader.download_to_file(\n",
" output_path=output_path,\n",
" file_format=\"csv\", # or \"json\"\n",
" start_date=start_date,\n",
" end_date=end_date\n",
")\n",
"\n",
"print(f\"Downloaded data to {output_path} in {time() - start:.2f} seconds\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"start = time()\n",
"output_path = \"November-3.csv\" # or \"consolidated_data.json\"\n",
"\n",
"# Define date range\n",
"start_date = \"2024-11-8\" # FIXME: Fix the error where data can't be collected before the date you started collecting.\n",
"end_date = \"2024-11-30\"\n",
"\n",
"# Start downloading\n",
"downloader.download_to_file(\n",
" output_path=output_path,\n",
" file_format=\"csv\", # or \"json\"\n",
" start_date=start_date,\n",
" end_date=end_date\n",
")\n",
"\n",
"print(f\"Downloaded data to {output_path} in {time() - start:.2f} seconds\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Aggregating"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}