diff --git a/src/infra/lambdas/RSSFeedProcessorLambda/src/analytics/embeddings/vector_db.py b/src/infra/lambdas/RSSFeedProcessorLambda/src/analytics/embeddings/vector_db.py index ff2e154..8c99396 100644 --- a/src/infra/lambdas/RSSFeedProcessorLambda/src/analytics/embeddings/vector_db.py +++ b/src/infra/lambdas/RSSFeedProcessorLambda/src/analytics/embeddings/vector_db.py @@ -1,11 +1,7 @@ -from pinecone import Pinecone - - import os -from dotenv import load_dotenv -from openai import OpenAI -load_dotenv() +from pinecone import Pinecone +from openai import OpenAI # Set up Pinecone client api_key = os.getenv("PINCEONE_API_KEY") diff --git a/src/infra/lambdas/RSSFeedProcessorLambda/src/data_storage.py b/src/infra/lambdas/RSSFeedProcessorLambda/src/data_storage.py index 1cbda8f..739165b 100644 --- a/src/infra/lambdas/RSSFeedProcessorLambda/src/data_storage.py +++ b/src/infra/lambdas/RSSFeedProcessorLambda/src/data_storage.py @@ -6,7 +6,7 @@ from random import randint # TODO: Move this article storage logic to a separate module inside of lambda. # TODO: Get better at handling loading local moduels insdie of the lambdda. -from infra.lambdas.RSSFeedProcessorLambda.src.analytics.embeddings.vector_db import get_index, upsert_vectors, vectorize +from analytics.embeddings.vector_db import get_index, upsert_vectors, vectorize logger = logging.getLogger() diff --git a/src/infra/lambdas/lambda_utils/update_lambda_env_vars.py b/src/infra/lambdas/lambda_utils/update_lambda_env_vars.py index 4f864d1..c1d5e8f 100644 --- a/src/infra/lambdas/lambda_utils/update_lambda_env_vars.py +++ b/src/infra/lambdas/lambda_utils/update_lambda_env_vars.py @@ -14,7 +14,13 @@ def update_env_vars(function_name): 'S3_BUCKET_NAME': os.environ.get('S3_BUCKET_NAME'), 'DYNAMODB_TABLE_NAME': os.environ.get('DYNAMODB_TABLE_NAME'), 'LOG_LEVEL': os.environ.get('LOG_LEVEL', 'INFO'), - 'STORAGE_STRATEGY': os.environ.get('STORAGE_STRATEGY') + 'STORAGE_STRATEGY': os.environ.get('STORAGE_STRATEGY'), + 'PINECONE_API_KEY': os.environ.get('PINECONE_API_KEY'), + 'PINECONE_SHARDS': os.environ.get('PINECONE_SHARDS'), + 'VECTOR_EMBEDDING_MODEL': os.environ.get('VECTOR_EMBEDDING_MODEL'), + 'VECTOR_EMBEDDING_DIM': os.environ.get('VECTOR_EMBEDDING_DIM'), + 'VECTOR_SEARCH_METRIC': os.environ.get('VECTOR_SEARCH_METRIC'), + 'PINECONE_DB_NAME': os.environ.get('PINECONE_DB_NAME') } return lambda_client.update_function_configuration(