mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
640 lines
20 KiB
Python
640 lines
20 KiB
Python
import time
|
|
import copy
|
|
from pathlib import Path
|
|
from math import ceil
|
|
from functools import partial, wraps
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.cuda.amp import autocast, GradScaler
|
|
|
|
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
|
|
from dalle2_pytorch.optimizer import get_optimizer
|
|
from dalle2_pytorch.version import __version__
|
|
from packaging import version
|
|
|
|
import numpy as np
|
|
|
|
# helper functions
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
def cast_tuple(val, length = 1):
|
|
return val if isinstance(val, tuple) else ((val,) * length)
|
|
|
|
def pick_and_pop(keys, d):
|
|
values = list(map(lambda key: d.pop(key), keys))
|
|
return dict(zip(keys, values))
|
|
|
|
def group_dict_by_key(cond, d):
|
|
return_val = [dict(),dict()]
|
|
for key in d.keys():
|
|
match = bool(cond(key))
|
|
ind = int(not match)
|
|
return_val[ind][key] = d[key]
|
|
return (*return_val,)
|
|
|
|
def string_begins_with(prefix, str):
|
|
return str.startswith(prefix)
|
|
|
|
def group_by_key_prefix(prefix, d):
|
|
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
|
|
|
def groupby_prefix_and_trim(prefix, d):
|
|
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
|
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
|
return kwargs_without_prefix, kwargs
|
|
|
|
def num_to_groups(num, divisor):
|
|
groups = num // divisor
|
|
remainder = num % divisor
|
|
arr = [divisor] * groups
|
|
if remainder > 0:
|
|
arr.append(remainder)
|
|
return arr
|
|
|
|
def clamp(value, min_value = None, max_value = None):
|
|
assert exists(min_value) or exists(max_value)
|
|
if exists(min_value):
|
|
value = max(value, min_value)
|
|
|
|
if exists(max_value):
|
|
value = min(value, max_value)
|
|
|
|
return value
|
|
|
|
# decorators
|
|
|
|
def cast_torch_tensor(fn):
|
|
@wraps(fn)
|
|
def inner(model, *args, **kwargs):
|
|
device = kwargs.pop('_device', next(model.parameters()).device)
|
|
cast_device = kwargs.pop('_cast_device', True)
|
|
|
|
kwargs_keys = kwargs.keys()
|
|
all_args = (*args, *kwargs.values())
|
|
split_kwargs_index = len(all_args) - len(kwargs_keys)
|
|
all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args))
|
|
|
|
if cast_device:
|
|
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
|
|
|
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
|
|
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
|
|
|
|
out = fn(model, *args, **kwargs)
|
|
return out
|
|
return inner
|
|
|
|
# gradient accumulation functions
|
|
|
|
def split_iterable(it, split_size):
|
|
accum = []
|
|
for ind in range(ceil(len(it) / split_size)):
|
|
start_index = ind * split_size
|
|
accum.append(it[start_index: (start_index + split_size)])
|
|
return accum
|
|
|
|
def split(t, split_size = None):
|
|
if not exists(split_size):
|
|
return t
|
|
|
|
if isinstance(t, torch.Tensor):
|
|
return t.split(split_size, dim = 0)
|
|
|
|
if isinstance(t, Iterable):
|
|
return split_iterable(t, split_size)
|
|
|
|
return TypeError
|
|
|
|
def find_first(cond, arr):
|
|
for el in arr:
|
|
if cond(el):
|
|
return el
|
|
return None
|
|
|
|
def split_args_and_kwargs(*args, split_size = None, **kwargs):
|
|
all_args = (*args, *kwargs.values())
|
|
len_all_args = len(all_args)
|
|
first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args)
|
|
assert exists(first_tensor)
|
|
|
|
batch_size = len(first_tensor)
|
|
split_size = default(split_size, batch_size)
|
|
num_chunks = ceil(batch_size / split_size)
|
|
|
|
dict_len = len(kwargs)
|
|
dict_keys = kwargs.keys()
|
|
split_kwargs_index = len_all_args - dict_len
|
|
|
|
split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args]
|
|
chunk_sizes = tuple(map(len, split_all_args[0]))
|
|
|
|
for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)):
|
|
chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:]
|
|
chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values)))
|
|
chunk_size_frac = chunk_size / batch_size
|
|
yield chunk_size_frac, (chunked_args, chunked_kwargs)
|
|
|
|
# saving and loading functions
|
|
|
|
# for diffusion prior
|
|
|
|
def load_diffusion_model(dprior_path, device):
|
|
dprior_path = Path(dprior_path)
|
|
assert dprior_path.exists(), 'Dprior model file does not exist'
|
|
loaded_obj = torch.load(str(dprior_path), map_location='cpu')
|
|
|
|
# Get hyperparameters of loaded model
|
|
dpn_config = loaded_obj['hparams']['diffusion_prior_network']
|
|
dp_config = loaded_obj['hparams']['diffusion_prior']
|
|
image_embed_dim = loaded_obj['image_embed_dim']['image_embed_dim']
|
|
|
|
# Create DiffusionPriorNetwork and DiffusionPrior with loaded hyperparameters
|
|
|
|
# DiffusionPriorNetwork
|
|
prior_network = DiffusionPriorNetwork( dim = image_embed_dim, **dpn_config).to(device)
|
|
|
|
# DiffusionPrior with text embeddings and image embeddings pre-computed
|
|
diffusion_prior = DiffusionPrior(net = prior_network, **dp_config, image_embed_dim = image_embed_dim).to(device)
|
|
|
|
# Load state dict from saved model
|
|
diffusion_prior.load_state_dict(loaded_obj['model'])
|
|
|
|
return diffusion_prior, loaded_obj
|
|
|
|
def save_diffusion_model(save_path, model, optimizer, scaler, config, image_embed_dim):
|
|
# Saving State Dict
|
|
print_ribbon('Saving checkpoint')
|
|
|
|
state_dict = dict(model=model.state_dict(),
|
|
optimizer=optimizer.state_dict(),
|
|
scaler=scaler.state_dict(),
|
|
hparams = config,
|
|
image_embed_dim = {"image_embed_dim":image_embed_dim})
|
|
torch.save(state_dict, save_path+'/'+str(time.time())+'_saved_model.pth')
|
|
|
|
# exponential moving average wrapper
|
|
|
|
class EMA(nn.Module):
|
|
"""
|
|
Implements exponential moving average shadowing for your model.
|
|
|
|
Utilizes an inverse decay schedule to manage longer term training runs.
|
|
By adjusting the power, you can control how fast EMA will ramp up to your specified beta.
|
|
|
|
@crowsonkb's notes on EMA Warmup:
|
|
|
|
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are
|
|
good values for models you plan to train for a million or more steps (reaches decay
|
|
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models
|
|
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
|
|
215.4k steps).
|
|
|
|
Args:
|
|
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
|
power (float): Exponential factor of EMA warmup. Default: 1.
|
|
min_value (float): The minimum EMA decay rate. Default: 0.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
model,
|
|
beta = 0.9999,
|
|
update_after_step = 10000,
|
|
update_every = 10,
|
|
inv_gamma = 1.0,
|
|
power = 2/3,
|
|
min_value = 0.0,
|
|
):
|
|
super().__init__()
|
|
self.beta = beta
|
|
self.online_model = model
|
|
self.ema_model = copy.deepcopy(model)
|
|
|
|
self.update_every = update_every
|
|
self.update_after_step = update_after_step
|
|
|
|
self.inv_gamma = inv_gamma
|
|
self.power = power
|
|
self.min_value = min_value
|
|
|
|
self.register_buffer('initted', torch.Tensor([False]))
|
|
self.register_buffer('step', torch.tensor([0]))
|
|
|
|
def restore_ema_model_device(self):
|
|
device = self.initted.device
|
|
self.ema_model.to(device)
|
|
|
|
def copy_params_from_model_to_ema(self):
|
|
for ma_param, current_param in zip(list(self.ema_model.parameters()), list(self.online_model.parameters())):
|
|
ma_param.data.copy_(current_param.data)
|
|
|
|
for ma_buffer, current_buffer in zip(list(self.ema_model.buffers()), list(self.online_model.buffers())):
|
|
ma_buffer.data.copy_(current_buffer.data)
|
|
|
|
def get_current_decay(self):
|
|
epoch = clamp(self.step.item() - self.update_after_step - 1, min_value = 0)
|
|
value = 1 - (1 + epoch / self.inv_gamma) ** - self.power
|
|
|
|
if epoch <= 0:
|
|
return 0.
|
|
|
|
return clamp(value, min_value = self.min_value, max_value = self.beta)
|
|
|
|
def update(self):
|
|
step = self.step.item()
|
|
self.step += 1
|
|
|
|
if (step % self.update_every) != 0:
|
|
return
|
|
|
|
if step <= self.update_after_step:
|
|
self.copy_params_from_model_to_ema()
|
|
return
|
|
|
|
if not self.initted.item():
|
|
self.copy_params_from_model_to_ema()
|
|
self.initted.data.copy_(torch.Tensor([True]))
|
|
|
|
self.update_moving_average(self.ema_model, self.online_model)
|
|
|
|
@torch.no_grad()
|
|
def update_moving_average(self, ma_model, current_model):
|
|
current_decay = self.get_current_decay()
|
|
|
|
for current_params, ma_params in zip(list(current_model.parameters()), list(ma_model.parameters())):
|
|
difference = ma_params.data - current_params.data
|
|
difference.mul_(1.0 - current_decay)
|
|
ma_params.sub_(difference)
|
|
|
|
for current_buffer, ma_buffer in zip(list(current_model.buffers()), list(ma_model.buffers())):
|
|
difference = ma_buffer - current_buffer
|
|
difference.mul_(1.0 - current_decay)
|
|
ma_buffer.sub_(difference)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.ema_model(*args, **kwargs)
|
|
|
|
# diffusion prior trainer
|
|
|
|
def prior_sample_in_chunks(fn):
|
|
@wraps(fn)
|
|
def inner(self, *args, max_batch_size = None, **kwargs):
|
|
if not exists(max_batch_size):
|
|
return fn(self, *args, **kwargs)
|
|
|
|
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
|
|
return torch.cat(outputs, dim = 0)
|
|
return inner
|
|
|
|
class DiffusionPriorTrainer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
diffusion_prior,
|
|
use_ema = True,
|
|
lr = 3e-4,
|
|
wd = 1e-2,
|
|
eps = 1e-6,
|
|
max_grad_norm = None,
|
|
amp = False,
|
|
group_wd_params = True,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
assert isinstance(diffusion_prior, DiffusionPrior)
|
|
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
|
|
|
self.diffusion_prior = diffusion_prior
|
|
|
|
# exponential moving average
|
|
|
|
self.use_ema = use_ema
|
|
if self.use_ema:
|
|
self.ema_diffusion_prior = EMA(diffusion_prior, **ema_kwargs)
|
|
|
|
# optimizer and mixed precision stuff
|
|
|
|
self.amp = amp
|
|
|
|
self.scaler = GradScaler(enabled = amp)
|
|
|
|
self.optimizer = get_optimizer(
|
|
diffusion_prior.parameters(),
|
|
lr = lr,
|
|
wd = wd,
|
|
eps = eps,
|
|
group_wd_params = group_wd_params,
|
|
**kwargs
|
|
)
|
|
|
|
# gradient clipping if needed
|
|
|
|
self.max_grad_norm = max_grad_norm
|
|
|
|
self.register_buffer('step', torch.tensor([0]))
|
|
|
|
def save(self, path, overwrite = True, **kwargs):
|
|
path = Path(path)
|
|
assert not (path.exists() and not overwrite)
|
|
path.parent.mkdir(parents = True, exist_ok = True)
|
|
|
|
save_obj = dict(
|
|
scaler = self.scaler.state_dict(),
|
|
optimizer = self.optimizer.state_dict(),
|
|
model = self.diffusion_prior.state_dict(),
|
|
version = __version__,
|
|
step = self.step.item(),
|
|
**kwargs
|
|
)
|
|
|
|
if self.use_ema:
|
|
save_obj = {**save_obj, 'ema': self.ema_diffusion_prior.state_dict()}
|
|
|
|
torch.save(save_obj, str(path))
|
|
|
|
def load(self, path, only_model = False, strict = True):
|
|
path = Path(path)
|
|
assert path.exists()
|
|
|
|
loaded_obj = torch.load(str(path))
|
|
|
|
if version.parse(__version__) != loaded_obj['version']:
|
|
print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}')
|
|
|
|
self.diffusion_prior.load_state_dict(loaded_obj['model'], strict = strict)
|
|
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
|
|
|
if only_model:
|
|
return loaded_obj
|
|
|
|
self.scaler.load_state_dict(loaded_obj['scaler'])
|
|
self.optimizer.load_state_dict(loaded_obj['optimizer'])
|
|
|
|
if self.use_ema:
|
|
assert 'ema' in loaded_obj
|
|
self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict)
|
|
|
|
return loaded_obj
|
|
|
|
def update(self):
|
|
if exists(self.max_grad_norm):
|
|
self.scaler.unscale_(self.optimizer)
|
|
nn.utils.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm)
|
|
|
|
self.scaler.step(self.optimizer)
|
|
self.scaler.update()
|
|
self.optimizer.zero_grad()
|
|
|
|
if self.use_ema:
|
|
self.ema_diffusion_prior.update()
|
|
|
|
self.step += 1
|
|
|
|
@torch.no_grad()
|
|
@cast_torch_tensor
|
|
@prior_sample_in_chunks
|
|
def p_sample_loop(self, *args, **kwargs):
|
|
return self.ema_diffusion_prior.ema_model.p_sample_loop(*args, **kwargs)
|
|
|
|
@torch.no_grad()
|
|
@cast_torch_tensor
|
|
@prior_sample_in_chunks
|
|
def sample(self, *args, **kwargs):
|
|
return self.ema_diffusion_prior.ema_model.sample(*args, **kwargs)
|
|
|
|
@torch.no_grad()
|
|
def sample_batch_size(self, *args, **kwargs):
|
|
return self.ema_diffusion_prior.ema_model.sample_batch_size(*args, **kwargs)
|
|
|
|
@cast_torch_tensor
|
|
def forward(
|
|
self,
|
|
*args,
|
|
max_batch_size = None,
|
|
**kwargs
|
|
):
|
|
total_loss = 0.
|
|
|
|
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
|
with autocast(enabled = self.amp):
|
|
loss = self.diffusion_prior(*chunked_args, **chunked_kwargs)
|
|
loss = loss * chunk_size_frac
|
|
|
|
total_loss += loss.item()
|
|
|
|
if self.training:
|
|
self.scaler.scale(loss).backward()
|
|
|
|
return total_loss
|
|
|
|
# decoder trainer
|
|
|
|
def decoder_sample_in_chunks(fn):
|
|
@wraps(fn)
|
|
def inner(self, *args, max_batch_size = None, **kwargs):
|
|
if not exists(max_batch_size):
|
|
return fn(self, *args, **kwargs)
|
|
|
|
if self.decoder.unconditional:
|
|
batch_size = kwargs.get('batch_size')
|
|
batch_sizes = num_to_groups(batch_size, max_batch_size)
|
|
outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes]
|
|
else:
|
|
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
|
|
|
|
return torch.cat(outputs, dim = 0)
|
|
return inner
|
|
|
|
class DecoderTrainer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
decoder,
|
|
use_ema = True,
|
|
lr = 1e-4,
|
|
wd = 1e-2,
|
|
eps = 1e-8,
|
|
max_grad_norm = 0.5,
|
|
amp = False,
|
|
group_wd_params = True,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
assert isinstance(decoder, Decoder)
|
|
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
|
|
|
self.decoder = decoder
|
|
self.num_unets = len(self.decoder.unets)
|
|
|
|
self.use_ema = use_ema
|
|
self.ema_unets = nn.ModuleList([])
|
|
|
|
self.amp = amp
|
|
|
|
# be able to finely customize learning rate, weight decay
|
|
# per unet
|
|
|
|
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
|
|
|
|
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
|
|
optimizer = get_optimizer(
|
|
unet.parameters(),
|
|
lr = unet_lr,
|
|
wd = unet_wd,
|
|
eps = unet_eps,
|
|
group_wd_params = group_wd_params,
|
|
**kwargs
|
|
)
|
|
|
|
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
|
|
|
|
if self.use_ema:
|
|
self.ema_unets.append(EMA(unet, **ema_kwargs))
|
|
|
|
scaler = GradScaler(enabled = amp)
|
|
setattr(self, f'scaler{ind}', scaler)
|
|
|
|
# gradient clipping if needed
|
|
|
|
self.max_grad_norm = max_grad_norm
|
|
|
|
self.register_buffer('step', torch.tensor([0.]))
|
|
|
|
def save(self, path, overwrite = True, **kwargs):
|
|
path = Path(path)
|
|
assert not (path.exists() and not overwrite)
|
|
path.parent.mkdir(parents = True, exist_ok = True)
|
|
|
|
save_obj = dict(
|
|
model = self.decoder.state_dict(),
|
|
version = __version__,
|
|
step = self.step.item(),
|
|
**kwargs
|
|
)
|
|
|
|
for ind in range(0, self.num_unets):
|
|
scaler_key = f'scaler{ind}'
|
|
optimizer_key = f'scaler{ind}'
|
|
scaler = getattr(self, scaler_key)
|
|
optimizer = getattr(self, optimizer_key)
|
|
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
|
|
|
|
if self.use_ema:
|
|
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
|
|
|
|
torch.save(save_obj, str(path))
|
|
|
|
def load(self, path, only_model = False, strict = True):
|
|
path = Path(path)
|
|
assert path.exists()
|
|
|
|
loaded_obj = torch.load(str(path))
|
|
|
|
if version.parse(__version__) != loaded_obj['version']:
|
|
print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {__version__}')
|
|
|
|
self.decoder.load_state_dict(loaded_obj['model'], strict = strict)
|
|
self.step.copy_(torch.ones_like(self.step) * loaded_obj['step'])
|
|
|
|
if only_model:
|
|
return loaded_obj
|
|
|
|
for ind in range(0, self.num_unets):
|
|
scaler_key = f'scaler{ind}'
|
|
optimizer_key = f'scaler{ind}'
|
|
scaler = getattr(self, scaler_key)
|
|
optimizer = getattr(self, optimizer_key)
|
|
|
|
scaler.load_state_dict(loaded_obj[scaler_key])
|
|
optimizer.load_state_dict(loaded_obj[optimizer_key])
|
|
|
|
if self.use_ema:
|
|
assert 'ema' in loaded_obj
|
|
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
|
|
|
|
return loaded_obj
|
|
|
|
@property
|
|
def unets(self):
|
|
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
|
|
|
|
def scale(self, loss, *, unet_number):
|
|
assert 1 <= unet_number <= self.num_unets
|
|
index = unet_number - 1
|
|
scaler = getattr(self, f'scaler{index}')
|
|
return scaler.scale(loss)
|
|
|
|
def update(self, unet_number = None):
|
|
if self.num_unets == 1:
|
|
unet_number = default(unet_number, 1)
|
|
|
|
assert exists(unet_number) and 1 <= unet_number <= self.num_unets
|
|
index = unet_number - 1
|
|
unet = self.decoder.unets[index]
|
|
|
|
optimizer = getattr(self, f'optim{index}')
|
|
scaler = getattr(self, f'scaler{index}')
|
|
|
|
if exists(self.max_grad_norm):
|
|
scaler.unscale_(optimizer)
|
|
nn.utils.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
|
|
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
|
|
if self.use_ema:
|
|
ema_unet = self.ema_unets[index]
|
|
ema_unet.update()
|
|
|
|
self.step += 1
|
|
|
|
@torch.no_grad()
|
|
@cast_torch_tensor
|
|
@decoder_sample_in_chunks
|
|
def sample(self, *args, **kwargs):
|
|
if kwargs.pop('use_non_ema', False) or not self.use_ema:
|
|
return self.decoder.sample(*args, **kwargs)
|
|
|
|
trainable_unets = self.decoder.unets
|
|
self.decoder.unets = self.unets # swap in exponential moving averaged unets for sampling
|
|
|
|
output = self.decoder.sample(*args, **kwargs)
|
|
|
|
self.decoder.unets = trainable_unets # restore original training unets
|
|
|
|
# cast the ema_model unets back to original device
|
|
for ema in self.ema_unets:
|
|
ema.restore_ema_model_device()
|
|
|
|
return output
|
|
|
|
@cast_torch_tensor
|
|
def forward(
|
|
self,
|
|
*args,
|
|
unet_number = None,
|
|
max_batch_size = None,
|
|
**kwargs
|
|
):
|
|
if self.num_unets == 1:
|
|
unet_number = default(unet_number, 1)
|
|
|
|
total_loss = 0.
|
|
|
|
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
|
with autocast(enabled = self.amp):
|
|
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
|
loss = loss * chunk_size_frac
|
|
|
|
total_loss += loss.item()
|
|
|
|
if self.training:
|
|
self.scale(loss, unet_number = unet_number).backward()
|
|
|
|
return total_loss
|