Files
DALLE2-pytorch/dalle2_pytorch/dalle2_pytorch.py

100 lines
1.8 KiB
Python

import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange
# use x-clip
from x_clip import CLIP
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# for controlling freezing of CLIP
def set_module_requires_grad_(module, requires_grad):
for param in module.parameters():
param.requires_grad = requires_grad
def freeze_all_layers_(module):
set_module_requires_grad_(module, False)
def unfreeze_all_layers_(module):
set_module_requires_grad_(module, True)
# diffusion prior
class DiffusionPrior(nn.Module):
def __init__(
self,
*,
clip
):
super().__init__()
assert isinstance(clip, CLIP)
def forward(
self,
*,
text,
image
):
return text
# decoder
class Decoder(nn.Module):
def __init__(
self,
*,
clip,
prior
):
super().__init__()
assert isinstance(clip, CLIP)
assert isinstance(prior, DiffusionPrior)
def forward(
self,
*,
image
):
return image
# main class
class DALLE2(nn.Module):
def __init__(
self,
*,
clip,
prior,
decoder
):
super().__init__()
assert isinstance(clip), CLIP
assert isinstance(prior), DiffusionPrior
assert isinstance(decoder), Decoder
@torch.no_grad()
def forward(
self,
*,
text
):
return text