mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
192 lines
6.5 KiB
Python
192 lines
6.5 KiB
Python
# take from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py
|
|
# to give users a quick easy start to training DALL-E without doing BPE
|
|
|
|
import torch
|
|
|
|
import html
|
|
import os
|
|
import ftfy
|
|
import regex as re
|
|
from functools import lru_cache
|
|
from pathlib import Path
|
|
|
|
from dalle2_pytorch.utils import import_or_print_error
|
|
|
|
# OpenAI simple tokenizer
|
|
|
|
@lru_cache()
|
|
def default_bpe():
|
|
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "data/bpe_simple_vocab_16e6.txt")
|
|
|
|
@lru_cache()
|
|
def bytes_to_unicode():
|
|
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2 ** 8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2 ** 8 + n)
|
|
n += 1
|
|
cs = [chr(n) for n in cs]
|
|
return dict(zip(bs, cs))
|
|
|
|
def get_pairs(word):
|
|
pairs = set()
|
|
prev_char = word[0]
|
|
for char in word[1:]:
|
|
pairs.add((prev_char, char))
|
|
prev_char = char
|
|
return pairs
|
|
|
|
def basic_clean(text):
|
|
text = ftfy.fix_text(text)
|
|
text = html.unescape(html.unescape(text))
|
|
return text.strip()
|
|
|
|
def whitespace_clean(text):
|
|
text = re.sub(r'\s+', ' ', text)
|
|
text = text.strip()
|
|
return text
|
|
|
|
class SimpleTokenizer(object):
|
|
def __init__(self, bpe_path = default_bpe()):
|
|
self.byte_encoder = bytes_to_unicode()
|
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
|
merges = Path(bpe_path).read_text(encoding='utf8').split('\n')
|
|
merges = merges[1:49152 - 256 - 2 + 1]
|
|
merges = [tuple(merge.split()) for merge in merges]
|
|
vocab = list(bytes_to_unicode().values())
|
|
vocab = vocab + [v + '</w>' for v in vocab]
|
|
for merge in merges:
|
|
vocab.append(''.join(merge))
|
|
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
|
|
|
self.vocab_size = 49408
|
|
|
|
self.encoder = dict(zip(vocab, range(len(vocab))))
|
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
|
self.pat = re.compile(
|
|
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
|
re.IGNORECASE)
|
|
|
|
def bpe(self, token):
|
|
if token in self.cache:
|
|
return self.cache[token]
|
|
word = tuple(token[:-1]) + (token[-1] + '</w>',)
|
|
pairs = get_pairs(word)
|
|
|
|
if not pairs:
|
|
return token + '</w>'
|
|
|
|
while True:
|
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
|
if bigram not in self.bpe_ranks:
|
|
break
|
|
first, second = bigram
|
|
new_word = []
|
|
i = 0
|
|
while i < len(word):
|
|
try:
|
|
j = word.index(first, i)
|
|
new_word.extend(word[i:j])
|
|
i = j
|
|
except:
|
|
new_word.extend(word[i:])
|
|
break
|
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|
new_word.append(first + second)
|
|
i += 2
|
|
else:
|
|
new_word.append(word[i])
|
|
i += 1
|
|
new_word = tuple(new_word)
|
|
word = new_word
|
|
if len(word) == 1:
|
|
break
|
|
else:
|
|
pairs = get_pairs(word)
|
|
word = ' '.join(word)
|
|
self.cache[token] = word
|
|
return word
|
|
|
|
def encode(self, text):
|
|
bpe_tokens = []
|
|
text = whitespace_clean(basic_clean(text)).lower()
|
|
for token in re.findall(self.pat, text):
|
|
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
|
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
|
return bpe_tokens
|
|
|
|
def decode(self, tokens, remove_start_end = True, pad_tokens = set()):
|
|
if torch.is_tensor(tokens):
|
|
tokens = tokens.tolist()
|
|
|
|
if remove_start_end:
|
|
tokens = [token for token in tokens if token not in (49406, 40407, 0)]
|
|
text = ''.join([self.decoder[token] for token in tokens if token not in pad_tokens])
|
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
|
return text
|
|
|
|
def tokenize(self, texts, context_length = 256, truncate_text = False):
|
|
if isinstance(texts, str):
|
|
texts = [texts]
|
|
|
|
all_tokens = [self.encode(text) for text in texts]
|
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
|
|
|
for i, tokens in enumerate(all_tokens):
|
|
if len(tokens) > context_length:
|
|
if truncate_text:
|
|
tokens = tokens[:context_length]
|
|
else:
|
|
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
|
result[i, :len(tokens)] = torch.tensor(tokens)
|
|
|
|
return result
|
|
|
|
tokenizer = SimpleTokenizer()
|
|
|
|
# YTTM tokenizer
|
|
|
|
class YttmTokenizer:
|
|
def __init__(self, bpe_path = None):
|
|
bpe_path = Path(bpe_path)
|
|
assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist'
|
|
|
|
self.yttm = import_or_print_error('youtokentome', 'you need to install youtokentome by `pip install youtokentome`')
|
|
|
|
tokenizer = self.yttm.BPE(model = str(bpe_path))
|
|
self.tokenizer = tokenizer
|
|
self.vocab_size = tokenizer.vocab_size()
|
|
|
|
def decode(self, tokens, pad_tokens = set()):
|
|
if torch.is_tensor(tokens):
|
|
tokens = tokens.tolist()
|
|
|
|
return self.tokenizer.decode(tokens, ignore_ids = pad_tokens.union({0}))
|
|
|
|
def encode(self, texts):
|
|
encoded = self.tokenizer.encode(texts, output_type = self.yttm.OutputType.ID)
|
|
return list(map(torch.tensor, encoded))
|
|
|
|
def tokenize(self, texts, context_length = 256, truncate_text = False):
|
|
if isinstance(texts, str):
|
|
texts = [texts]
|
|
|
|
all_tokens = self.encode(texts)
|
|
|
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
|
for i, tokens in enumerate(all_tokens):
|
|
if len(tokens) > context_length:
|
|
if truncate_text:
|
|
tokens = tokens[:context_length]
|
|
else:
|
|
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
|
result[i, :len(tokens)] = torch.tensor(tokens)
|
|
|
|
return result
|