mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
418 lines
11 KiB
Python
418 lines
11 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn, einsum
|
|
|
|
from einops import rearrange
|
|
from einops_exts import rearrange_many
|
|
|
|
# use x-clip
|
|
|
|
from x_clip import CLIP
|
|
|
|
# helper functions
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
def eval_decorator(fn):
|
|
def inner(model, *args, **kwargs):
|
|
was_training = model.training
|
|
model.eval()
|
|
out = fn(model, *args, **kwargs)
|
|
model.train(was_training)
|
|
return out
|
|
return inner
|
|
|
|
# for controlling freezing of CLIP
|
|
|
|
def set_module_requires_grad_(module, requires_grad):
|
|
for param in module.parameters():
|
|
param.requires_grad = requires_grad
|
|
|
|
def freeze_all_layers_(module):
|
|
set_module_requires_grad_(module, False)
|
|
|
|
def unfreeze_all_layers_(module):
|
|
set_module_requires_grad_(module, True)
|
|
|
|
def freeze_model_and_make_eval_(model):
|
|
model.eval()
|
|
freeze_all_layers_(model)
|
|
|
|
# diffusion prior
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dim, eps = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.scale = dim ** 0.5
|
|
self.gamma = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x):
|
|
squared_sum = (x ** 2).sum(dim = -1, keepdim = True)
|
|
inv_norm = torch.rsqrt(squared_sum + self.eps)
|
|
return x * inv_norm * self.gamma * self.scale
|
|
|
|
def FeedForward(dim, mult = 4, dropout = 0.):
|
|
inner_dim = int(mult * dim)
|
|
return nn.Sequential(
|
|
RMSNorm(dim),
|
|
nn.Linear(dim, inner_dim, bias = False),
|
|
nn.GELU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(inner_dim, dim, bias = False)
|
|
)
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
dim_head = 64,
|
|
heads = 8,
|
|
dropout = 0.
|
|
):
|
|
super().__init__()
|
|
self.scale = dim_head ** -0.5
|
|
inner_dim = dim_head * heads
|
|
|
|
self.norm = RMSNorm(dim)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
|
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
|
|
|
def forward(self, x, mask = None):
|
|
n, device = x.shape[1], x.device
|
|
|
|
x = self.norm(x)
|
|
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
|
|
|
q, k, v = rearrange_many(qkv, 'b n (h d) -> b h n d')
|
|
|
|
q = q * self.scale
|
|
|
|
sim = einsum('b h i d, b h j d -> b h i j')
|
|
max_neg_value = -torch.finfo(sim.dtype).max
|
|
|
|
if exists(mask):
|
|
mask = rearrange(mask, 'b j -> b 1 1 j')
|
|
sim = sim.masked_fill(~mask, max_neg_value)
|
|
|
|
causal_mask = torch.ones((n, n), dtype = torch.bool, device = device).triu(1)
|
|
sim = sim.masked_fill(causal_mask, max_neg_value)
|
|
|
|
sim = sim - sim.amax(dim = -1, keepdim = True)
|
|
attn = sim.softmax(dim = -1)
|
|
|
|
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
return self.to_out(out)
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
depth,
|
|
dim_head = 64,
|
|
heads = 8,
|
|
ff_mult = 4,
|
|
norm_out = False,
|
|
attn_dropout = 0.,
|
|
ff_dropout = 0.
|
|
):
|
|
super().__init__()
|
|
# todo - bring in rotary embeddings or alibi
|
|
|
|
self.layers = nn.ModuleList([])
|
|
for _ in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout),
|
|
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)
|
|
]))
|
|
|
|
self.norm = RMSNorm(dim) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
mask = None # we will need a mask here, due to variable length of the text encodings - also offer dalle1 strategy with padding token embeddings
|
|
):
|
|
for attn, ff in self.layers:
|
|
x = attn(x, mask = mask) + x
|
|
x = ff(x) + x
|
|
|
|
return self.norm(x)
|
|
|
|
class DiffusionPriorNetwork(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_timesteps = 1000,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
self.time_embeddings = nn.Embedding(num_timesteps, dim) # also offer a continuous version of timestep embeddings, with a 2 layer MLP
|
|
self.learned_query = nn.Parameter(torch.randn(dim))
|
|
self.causal_transformer = Transformer(**kwargs)
|
|
|
|
def forward(
|
|
self,
|
|
image_embed,
|
|
*,
|
|
diffusion_timesteps,
|
|
text_encodings,
|
|
text_embed,
|
|
mask = None,
|
|
):
|
|
batch = image_embed.shape[0]
|
|
|
|
# in section 2.2, last paragraph
|
|
# "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction"
|
|
|
|
text_embed, image_embed = rearrange_many((text_embed, image_embed), 'b d -> b 1 d')
|
|
|
|
if exists(mask):
|
|
mask = F.pad(mask, (0, 4), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query
|
|
|
|
time_embed = self.time_embeddings(diffusion_timesteps)
|
|
|
|
learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch)
|
|
|
|
tokens = torch.cat((
|
|
text_encodings,
|
|
text_embed,
|
|
time_embed,
|
|
learned_queries
|
|
), dim = -2)
|
|
|
|
tokens = self.causal_transformer(tokens, mask = mask)
|
|
|
|
# get learned query, which should predict the image embedding (per DDPM timestep)
|
|
|
|
pred_image_embed = tokens[..., -1, :]
|
|
|
|
return pred_image_embed
|
|
|
|
class DiffusionPrior(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
clip
|
|
):
|
|
super().__init__()
|
|
assert isinstance(clip, CLIP)
|
|
freeze_model_and_make_eval_(clip)
|
|
|
|
def forward(
|
|
self,
|
|
*,
|
|
text,
|
|
image = None
|
|
):
|
|
return image_embed
|
|
|
|
# decoder
|
|
|
|
def Upsample(dim):
|
|
return nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
|
|
|
def Downsample(dim):
|
|
return nn.Conv2d(dim, dim, 4, 2, 1)
|
|
|
|
class SinusoidalPosEmb(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, x):
|
|
half_dim = self.dim // 2
|
|
emb = math.log(10000) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, device = x.device) * -emb)
|
|
emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j')
|
|
return torch.cat((emb.sin(), emb.cos()), dim = -1)
|
|
|
|
class ConvNextBlock(nn.Module):
|
|
""" https://arxiv.org/abs/2201.03545 """
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out,
|
|
*,
|
|
time_emb_dim = None,
|
|
mult = 2,
|
|
norm = True
|
|
):
|
|
super().__init__()
|
|
need_projection = dim != dim_out
|
|
|
|
self.mlp = nn.Sequential(
|
|
nn.GELU(),
|
|
nn.Linear(time_emb_dim, dim)
|
|
) if exists(time_emb_dim) else None
|
|
|
|
self.ds_conv = nn.Conv2d(dim, dim, 7, padding = 3, groups = dim)
|
|
|
|
inner_dim = int(dim_out * mult)
|
|
self.net = nn.Sequential(
|
|
RMSNorm(dim) if norm else nn.Identity(),
|
|
nn.Conv2d(dim, inner_dim, 3, padding = 1),
|
|
nn.GELU(),
|
|
nn.Conv2d(inner_dim, dim_out, 3, padding = 1)
|
|
)
|
|
|
|
self.res_conv = nn.Conv2d(dim, dim_out, 1) if need_projection else nn.Identity()
|
|
|
|
def forward(self, x, time_emb = None):
|
|
h = self.ds_conv(x)
|
|
|
|
if exists(self.mlp):
|
|
assert exists(time_emb)
|
|
condition = self.mlp(time_emb)
|
|
h = h + rearrange(condition, 'b c -> b c 1 1')
|
|
|
|
h = self.net(h)
|
|
return h + self.res_conv(x)
|
|
|
|
class Unet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
*,
|
|
image_embed_dim,
|
|
out_dim = None,
|
|
dim_mults=(1, 2, 4, 8),
|
|
channels = 3,
|
|
with_time_emb = True
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
|
|
dims = [channels, *map(lambda m: dim * m, dim_mults)]
|
|
in_out = list(zip(dims[:-1], dims[1:]))
|
|
|
|
if with_time_emb:
|
|
time_dim = dim
|
|
self.time_mlp = nn.Sequential(
|
|
SinusoidalPosEmb(dim),
|
|
nn.Linear(dim, dim * 4),
|
|
nn.GELU(),
|
|
nn.Linear(dim * 4, dim)
|
|
)
|
|
else:
|
|
time_dim = None
|
|
self.time_mlp = None
|
|
|
|
self.downs = nn.ModuleList([])
|
|
self.ups = nn.ModuleList([])
|
|
num_resolutions = len(in_out)
|
|
|
|
for ind, (dim_in, dim_out) in enumerate(in_out):
|
|
is_last = ind >= (num_resolutions - 1)
|
|
|
|
self.downs.append(nn.ModuleList([
|
|
ConvNextBlock(dim_in, dim_out, time_emb_dim = time_dim, norm = ind != 0),
|
|
ConvNextBlock(dim_out, dim_out, time_emb_dim = time_dim),
|
|
Downsample(dim_out) if not is_last else nn.Identity()
|
|
]))
|
|
|
|
mid_dim = dims[-1]
|
|
self.mid_block = ConvNextBlock(mid_dim, mid_dim, time_emb_dim = time_dim)
|
|
|
|
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
|
|
is_last = ind >= (num_resolutions - 1)
|
|
|
|
self.ups.append(nn.ModuleList([
|
|
ConvNextBlock(dim_out * 2, dim_in, time_emb_dim = time_dim),
|
|
ConvNextBlock(dim_in, dim_in, time_emb_dim = time_dim),
|
|
Upsample(dim_in) if not is_last else nn.Identity()
|
|
]))
|
|
|
|
out_dim = default(out_dim, channels)
|
|
self.final_conv = nn.Sequential(
|
|
ConvNextBlock(dim, dim),
|
|
nn.Conv2d(dim, out_dim, 1)
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
*,
|
|
image_embed,
|
|
time,
|
|
text_encodings = None,
|
|
cond_prob_drop = 0.2
|
|
):
|
|
t = self.time_mlp(time) if exists(self.time_mlp) else None
|
|
|
|
hiddens = []
|
|
|
|
for convnext, convnext2, downsample in self.downs:
|
|
x = convnext(x, t)
|
|
x = convnext2(x, t)
|
|
hiddens.append(x)
|
|
x = downsample(x)
|
|
|
|
x = self.mid_block(x, t)
|
|
|
|
for convnext, convnext2, upsample in self.ups:
|
|
x = torch.cat((x, hiddens.pop()), dim=1)
|
|
x = convnext(x, t)
|
|
x = convnext2(x, t)
|
|
x = upsample(x)
|
|
|
|
return self.final_conv(x)
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
clip,
|
|
prior
|
|
):
|
|
super().__init__()
|
|
assert isinstance(clip, CLIP)
|
|
assert isinstance(prior, DiffusionPrior)
|
|
freeze_model_and_make_eval_(clip)
|
|
|
|
def forward(
|
|
self,
|
|
*,
|
|
image,
|
|
image_embed,
|
|
cond_drop_prob = 0.2, # for the classifier free guidance
|
|
text_embed = None # in paper, text embedding was optional for conditioning decoder
|
|
):
|
|
return image
|
|
|
|
# main class
|
|
|
|
class DALLE2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
clip,
|
|
prior,
|
|
decoder,
|
|
tokenizer = None
|
|
):
|
|
super().__init__()
|
|
assert isinstance(clip), CLIP
|
|
assert isinstance(prior), DiffusionPrior
|
|
assert isinstance(decoder), Decoder
|
|
self.tokenizer = tokenizer
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
*,
|
|
text
|
|
):
|
|
return image
|