mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-18 01:14:20 +01:00
* update configs for prior add prior warmup to config update example prior config * update prior trainer & script add deepspeed amp & warmup adopt full accelerator support reload at sample point finish epoch resume code * update tracker save method for prior * helper functions for prior_loader
771 lines
22 KiB
Python
771 lines
22 KiB
Python
import click
|
|
import torch
|
|
|
|
from torch import nn
|
|
from typing import List
|
|
from accelerate import Accelerator
|
|
from accelerate.utils import set_seed
|
|
from torch.utils.data import DataLoader
|
|
from embedding_reader import EmbeddingReader
|
|
from accelerate.utils import dataclasses as accelerate_dataclasses
|
|
|
|
from dalle2_pytorch.utils import Timer
|
|
from dalle2_pytorch.trackers import Tracker
|
|
from dalle2_pytorch import DiffusionPriorTrainer
|
|
from dalle2_pytorch.dataloaders import get_reader, make_splits
|
|
from dalle2_pytorch.train_configs import (
|
|
DiffusionPriorConfig,
|
|
DiffusionPriorTrainConfig,
|
|
TrainDiffusionPriorConfig,
|
|
)
|
|
|
|
|
|
# helpers
|
|
|
|
|
|
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def all_between(values: list, lower_bound, upper_bound):
|
|
for value in values:
|
|
if value < lower_bound or value > upper_bound:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def make_model(
|
|
prior_config: DiffusionPriorConfig,
|
|
train_config: DiffusionPriorTrainConfig,
|
|
device: str = None,
|
|
accelerator: Accelerator = None,
|
|
):
|
|
# create model from config
|
|
diffusion_prior = prior_config.create()
|
|
|
|
# instantiate the trainer
|
|
trainer = DiffusionPriorTrainer(
|
|
diffusion_prior=diffusion_prior,
|
|
lr=train_config.lr,
|
|
wd=train_config.wd,
|
|
max_grad_norm=train_config.max_grad_norm,
|
|
amp=train_config.amp,
|
|
use_ema=train_config.use_ema,
|
|
device=device,
|
|
accelerator=accelerator,
|
|
warmup_steps=train_config.warmup_steps,
|
|
)
|
|
|
|
return trainer
|
|
|
|
|
|
def create_tracker(
|
|
accelerator: Accelerator,
|
|
config: TrainDiffusionPriorConfig,
|
|
config_path: str,
|
|
dummy: bool = False,
|
|
) -> Tracker:
|
|
tracker_config = config.tracker
|
|
|
|
accelerator_config = {
|
|
"Distributed": accelerator.distributed_type
|
|
!= accelerate_dataclasses.DistributedType.NO,
|
|
"DistributedType": accelerator.distributed_type,
|
|
"NumProcesses": accelerator.num_processes,
|
|
"MixedPrecision": accelerator.mixed_precision,
|
|
}
|
|
|
|
tracker: Tracker = tracker_config.create(
|
|
config, accelerator_config, dummy_mode=dummy
|
|
)
|
|
|
|
tracker.save_config(config_path, config_name="prior_config.json")
|
|
|
|
return tracker
|
|
|
|
|
|
def pad_gather_reduce(trainer: DiffusionPriorTrainer, x, method="mean"):
|
|
"""
|
|
pad a value or tensor across all processes and gather
|
|
|
|
params:
|
|
- trainer: a trainer that carries an accelerator object
|
|
- x: a number or torch tensor to reduce
|
|
- method: "mean", "sum", "max", "min"
|
|
|
|
return:
|
|
- the average tensor after maskin out 0's
|
|
- None if the gather resulted in an empty tensor
|
|
"""
|
|
|
|
assert method in [
|
|
"mean",
|
|
"sum",
|
|
"max",
|
|
"min",
|
|
], "This function has limited capabilities [sum, mean, max, min]"
|
|
assert type(x) is not None, "Cannot reduce a None type object"
|
|
|
|
# wait for everyone to arrive here before gathering
|
|
|
|
if type(x) is not torch.Tensor:
|
|
x = torch.tensor([x])
|
|
|
|
# verify that the tensor is on the proper device
|
|
x = x.to(trainer.device)
|
|
|
|
# pad across processes
|
|
padded_x = trainer.accelerator.pad_across_processes(x, dim=0)
|
|
|
|
# gather across all procesess
|
|
gathered_x = trainer.accelerator.gather(padded_x)
|
|
|
|
# mask out zeros
|
|
masked_x = gathered_x[gathered_x != 0]
|
|
|
|
# if the tensor is empty, warn and return None
|
|
if len(masked_x) == 0:
|
|
click.secho(
|
|
f"The call to this method resulted in an empty tensor after masking out zeros. The gathered tensor was this: {gathered_x} and the original value passed was: {x}.",
|
|
fg="red",
|
|
)
|
|
return None
|
|
|
|
if method == "mean":
|
|
return torch.mean(masked_x)
|
|
elif method == "sum":
|
|
return torch.sum(masked_x)
|
|
elif method == "max":
|
|
return torch.max(masked_x)
|
|
elif method == "min":
|
|
return torch.min(masked_x)
|
|
|
|
|
|
def save_trainer(
|
|
tracker: Tracker,
|
|
trainer: DiffusionPriorTrainer,
|
|
is_latest: bool,
|
|
is_best: bool,
|
|
epoch: int,
|
|
samples_seen: int,
|
|
best_validation_loss: float,
|
|
):
|
|
"""
|
|
Logs the model with an appropriate method depending on the tracker
|
|
"""
|
|
trainer.accelerator.wait_for_everyone()
|
|
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(
|
|
f"RANK:{trainer.accelerator.process_index} | Saving Model | Best={is_best} | Latest={is_latest}",
|
|
fg="magenta",
|
|
)
|
|
|
|
tracker.save(
|
|
trainer=trainer,
|
|
is_best=is_best,
|
|
is_latest=is_latest,
|
|
epoch=int(epoch),
|
|
samples_seen=int(samples_seen),
|
|
best_validation_loss=best_validation_loss,
|
|
)
|
|
|
|
|
|
def recall_trainer(tracker: Tracker, trainer: DiffusionPriorTrainer):
|
|
"""
|
|
Loads the model with an appropriate method depending on the tracker
|
|
"""
|
|
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(f"Loading model from {type(tracker.loader).__name__}", fg="yellow")
|
|
|
|
state_dict = tracker.recall()
|
|
|
|
trainer.load(state_dict, strict=True)
|
|
|
|
return (
|
|
int(state_dict.get("epoch", 0)),
|
|
state_dict.get("best_validation_loss", 0),
|
|
int(state_dict.get("samples_seen", 0)),
|
|
)
|
|
|
|
|
|
# eval functions
|
|
|
|
|
|
def report_validation_loss(
|
|
trainer: DiffusionPriorTrainer,
|
|
dataloader: DataLoader,
|
|
text_conditioned: bool,
|
|
use_ema: bool,
|
|
tracker: Tracker,
|
|
split: str,
|
|
tracker_folder: str,
|
|
loss_type: str,
|
|
):
|
|
"""
|
|
Compute the validation loss on a given subset of data.
|
|
"""
|
|
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(
|
|
f"Measuring performance on {use_ema}-{split} split",
|
|
fg="green",
|
|
blink=True,
|
|
)
|
|
|
|
total_loss = torch.zeros(1, dtype=torch.float, device=trainer.device)
|
|
|
|
for image_embeddings, text_data in dataloader:
|
|
image_embeddings = image_embeddings.to(trainer.device)
|
|
text_data = text_data.to(trainer.device)
|
|
|
|
input_args = dict(image_embed=image_embeddings)
|
|
|
|
if text_conditioned:
|
|
input_args = dict(**input_args, text=text_data)
|
|
else:
|
|
input_args = dict(**input_args, text_embed=text_data)
|
|
|
|
if use_ema:
|
|
loss = trainer.ema_diffusion_prior(**input_args)
|
|
else:
|
|
loss = trainer(**input_args)
|
|
|
|
total_loss += loss
|
|
|
|
# compute the average loss across all processes
|
|
|
|
avg_loss = pad_gather_reduce(trainer, total_loss, method="mean")
|
|
stats = {f"{tracker_folder}/{loss_type}-loss": avg_loss}
|
|
|
|
# print and log results on main process
|
|
tracker.log(stats, step=trainer.step.item() + 1)
|
|
|
|
return avg_loss
|
|
|
|
|
|
def report_cosine_sims(
|
|
trainer: DiffusionPriorTrainer,
|
|
dataloader: DataLoader,
|
|
text_conditioned: bool,
|
|
tracker: Tracker,
|
|
split: str,
|
|
timesteps: int,
|
|
tracker_folder: str,
|
|
):
|
|
trainer.eval()
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(
|
|
f"Measuring Cosine-Similarity on {split} split with {timesteps} timesteps",
|
|
fg="green",
|
|
blink=True,
|
|
)
|
|
|
|
for test_image_embeddings, text_data in dataloader:
|
|
test_image_embeddings = test_image_embeddings.to(trainer.device)
|
|
text_data = text_data.to(trainer.device)
|
|
|
|
# we are text conditioned, we produce an embedding from the tokenized text
|
|
if text_conditioned:
|
|
text_embedding, text_encodings = trainer.embed_text(text_data)
|
|
text_cond = dict(text_embed=text_embedding, text_encodings=text_encodings)
|
|
else:
|
|
text_embedding = text_data
|
|
text_cond = dict(text_embed=text_embedding)
|
|
|
|
# make a copy of the text embeddings for shuffling
|
|
text_embed_shuffled = text_embedding.clone()
|
|
|
|
# roll the text to simulate "unrelated" captions
|
|
rolled_idx = torch.roll(torch.arange(text_embedding.shape[0]), 1)
|
|
text_embed_shuffled = text_embed_shuffled[rolled_idx]
|
|
text_embed_shuffled = text_embed_shuffled / text_embed_shuffled.norm(
|
|
dim=1, keepdim=True
|
|
)
|
|
|
|
if text_conditioned:
|
|
text_encodings_shuffled = text_encodings[rolled_idx]
|
|
else:
|
|
text_encodings_shuffled = None
|
|
|
|
text_cond_shuffled = dict(
|
|
text_embed=text_embed_shuffled, text_encodings=text_encodings_shuffled
|
|
)
|
|
|
|
# prepare the text embedding
|
|
text_embed = text_embedding / text_embedding.norm(dim=1, keepdim=True)
|
|
|
|
# prepare image embeddings
|
|
test_image_embeddings = test_image_embeddings / test_image_embeddings.norm(
|
|
dim=1, keepdim=True
|
|
)
|
|
|
|
# predict on the unshuffled text embeddings
|
|
predicted_image_embeddings = trainer.p_sample_loop(
|
|
test_image_embeddings.shape,
|
|
text_cond,
|
|
timesteps=timesteps,
|
|
)
|
|
|
|
predicted_image_embeddings = (
|
|
predicted_image_embeddings
|
|
/ predicted_image_embeddings.norm(dim=1, keepdim=True)
|
|
)
|
|
|
|
# predict on the shuffled embeddings
|
|
predicted_unrelated_embeddings = trainer.p_sample_loop(
|
|
test_image_embeddings.shape,
|
|
text_cond_shuffled,
|
|
timesteps=timesteps,
|
|
)
|
|
|
|
predicted_unrelated_embeddings = (
|
|
predicted_unrelated_embeddings
|
|
/ predicted_unrelated_embeddings.norm(dim=1, keepdim=True)
|
|
)
|
|
|
|
# calculate similarities
|
|
orig_sim = pad_gather_reduce(
|
|
trainer, cos(text_embed, test_image_embeddings), method="mean"
|
|
)
|
|
pred_sim = pad_gather_reduce(
|
|
trainer, cos(text_embed, predicted_image_embeddings), method="mean"
|
|
)
|
|
unrel_sim = pad_gather_reduce(
|
|
trainer, cos(text_embed, predicted_unrelated_embeddings), method="mean"
|
|
)
|
|
pred_img_sim = pad_gather_reduce(
|
|
trainer,
|
|
cos(test_image_embeddings, predicted_image_embeddings),
|
|
method="mean",
|
|
)
|
|
|
|
stats = {
|
|
f"{tracker_folder}/baseline similarity [steps={timesteps}]": orig_sim,
|
|
f"{tracker_folder}/similarity with text [steps={timesteps}]": pred_sim,
|
|
f"{tracker_folder}/similarity with original image [steps={timesteps}]": pred_img_sim,
|
|
f"{tracker_folder}/similarity with unrelated caption [steps={timesteps}]": unrel_sim,
|
|
f"{tracker_folder}/difference from baseline similarity [steps={timesteps}]": pred_sim
|
|
- orig_sim,
|
|
}
|
|
|
|
tracker.log(stats, step=trainer.step.item() + 1)
|
|
|
|
|
|
def eval_model(
|
|
trainer: DiffusionPriorTrainer,
|
|
dataloader: DataLoader,
|
|
text_conditioned: bool,
|
|
split: str,
|
|
tracker: Tracker,
|
|
use_ema: bool,
|
|
report_cosine: bool,
|
|
report_loss: bool,
|
|
timesteps: List[int],
|
|
loss_type: str = None,
|
|
):
|
|
"""
|
|
Run evaluation on a model and track metrics
|
|
|
|
returns: loss if requested
|
|
"""
|
|
trainer.eval()
|
|
|
|
use_ema = "ema" if use_ema else "online"
|
|
tracker_folder = f"metrics/{use_ema}-{split}"
|
|
|
|
# detemine if valid timesteps are passed
|
|
|
|
min_timesteps = trainer.accelerator.unwrap_model(
|
|
trainer.diffusion_prior
|
|
).sample_timesteps
|
|
max_timesteps = trainer.accelerator.unwrap_model(
|
|
trainer.diffusion_prior
|
|
).noise_scheduler.num_timesteps
|
|
|
|
assert all_between(
|
|
timesteps, lower_bound=min_timesteps, upper_bound=max_timesteps
|
|
), f"all timesteps values must be between {min_timesteps} and {max_timesteps}: got {timesteps}"
|
|
|
|
# measure cosine metrics across various eta and timesteps
|
|
|
|
if report_cosine:
|
|
for timestep in timesteps:
|
|
report_cosine_sims(
|
|
trainer,
|
|
dataloader=dataloader,
|
|
text_conditioned=text_conditioned,
|
|
tracker=tracker,
|
|
split=split,
|
|
timesteps=timestep,
|
|
tracker_folder=tracker_folder,
|
|
)
|
|
|
|
# measure loss on a seperate split of data
|
|
|
|
if report_loss:
|
|
loss = report_validation_loss(
|
|
trainer=trainer,
|
|
dataloader=dataloader,
|
|
text_conditioned=text_conditioned,
|
|
use_ema=use_ema,
|
|
tracker=tracker,
|
|
split=split,
|
|
tracker_folder=tracker_folder,
|
|
loss_type=loss_type,
|
|
)
|
|
|
|
return loss
|
|
|
|
|
|
# training script
|
|
|
|
|
|
def train(
|
|
trainer: DiffusionPriorTrainer,
|
|
tracker: Tracker,
|
|
train_loader: DataLoader,
|
|
eval_loader: DataLoader,
|
|
test_loader: DataLoader,
|
|
config: DiffusionPriorTrainConfig,
|
|
):
|
|
# init timers
|
|
save_timer = Timer() # when to save
|
|
samples_timer = Timer() # samples/sec
|
|
validation_profiler = Timer() # how long is validation taking
|
|
validation_countdown = Timer() # when to perform evalutation
|
|
|
|
# keep track of best validation loss
|
|
|
|
best_validation_loss = config.train.best_validation_loss
|
|
samples_seen = config.train.num_samples_seen
|
|
|
|
# do training
|
|
|
|
start_epoch = config.train.current_epoch
|
|
|
|
for epoch in range(start_epoch, config.train.epochs):
|
|
# if we finished out an old epoch, reset the distribution to be a full epoch
|
|
tracker.log({"tracking/epoch": epoch}, step=trainer.step.item())
|
|
|
|
if train_loader.dataset.get_start() > 0 and epoch == start_epoch+1:
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(f"Finished resumed epoch...resetting dataloader.")
|
|
train_loader.dataset.set_start(0)
|
|
|
|
for img, txt in train_loader:
|
|
# setup things every step
|
|
|
|
trainer.train()
|
|
current_step = trainer.step.item()
|
|
samples_timer.reset()
|
|
|
|
# place data on device
|
|
|
|
img = img.to(trainer.device)
|
|
txt = txt.to(trainer.device)
|
|
|
|
# pass to model
|
|
|
|
loss = trainer(text=txt, image_embed=img)
|
|
|
|
# perform backprop & apply EMA updates
|
|
|
|
trainer.update()
|
|
|
|
# gather info about training step
|
|
|
|
all_loss = pad_gather_reduce(trainer, loss, method="mean")
|
|
num_samples = pad_gather_reduce(trainer, len(txt), method="sum")
|
|
samples_per_sec = num_samples / samples_timer.elapsed()
|
|
samples_seen += num_samples
|
|
ema_decay = trainer.ema_diffusion_prior.get_current_decay()
|
|
|
|
# log
|
|
|
|
tracker.log(
|
|
{
|
|
"tracking/samples-sec": samples_per_sec,
|
|
"tracking/samples-seen": samples_seen,
|
|
"tracking/ema-decay": ema_decay,
|
|
f"tracking/training-{config.prior.loss_type}": all_loss,
|
|
},
|
|
step=current_step,
|
|
)
|
|
|
|
# Metric Tracking @ Timed Intervals
|
|
|
|
eval_delta = pad_gather_reduce(
|
|
trainer, validation_countdown.elapsed(), method="min"
|
|
)
|
|
|
|
if eval_delta != None and eval_delta > config.data.eval_every_seconds:
|
|
# begin timing how long this takes
|
|
|
|
validation_profiler.reset()
|
|
|
|
# package kwargs for evaluation
|
|
|
|
eval_kwargs = {
|
|
"trainer": trainer,
|
|
"tracker": tracker,
|
|
"text_conditioned": config.prior.condition_on_text_encodings,
|
|
"timesteps": config.train.eval_timesteps,
|
|
}
|
|
|
|
# ONLINE MODEL : COSINE : LOSS : VALIDATION SPLIT
|
|
|
|
eval_model(
|
|
dataloader=eval_loader,
|
|
loss_type=config.prior.loss_type,
|
|
split="validation",
|
|
use_ema=False,
|
|
report_cosine=False,
|
|
report_loss=True,
|
|
**eval_kwargs,
|
|
)
|
|
|
|
# EMA MODEL : COSINE : LOSS : VALIDATION DATA
|
|
|
|
ema_val_loss = eval_model(
|
|
dataloader=eval_loader,
|
|
loss_type=config.prior.loss_type,
|
|
split="validation",
|
|
use_ema=True,
|
|
report_cosine=True,
|
|
report_loss=True,
|
|
**eval_kwargs,
|
|
)
|
|
|
|
tracker.log(
|
|
{
|
|
"tracking/validation length (minutes)": validation_profiler.elapsed()
|
|
/ 60
|
|
}
|
|
)
|
|
|
|
# check if the ema validation is the lowest seen yet
|
|
|
|
if ema_val_loss < best_validation_loss:
|
|
best_validation_loss = ema_val_loss
|
|
|
|
# go save the model as best
|
|
|
|
save_trainer(
|
|
trainer=trainer,
|
|
tracker=tracker,
|
|
is_best=True,
|
|
is_latest=False,
|
|
samples_seen=samples_seen,
|
|
epoch=epoch,
|
|
best_validation_loss=best_validation_loss,
|
|
)
|
|
|
|
# reset timer for validaiton
|
|
|
|
validation_countdown.reset()
|
|
|
|
elif eval_delta is None:
|
|
click.secho(
|
|
f"Error occured reading the eval time on rank: {trainer.device}",
|
|
fg="yellow",
|
|
)
|
|
|
|
# save as latest model on schedule
|
|
|
|
save_delta = pad_gather_reduce(trainer, save_timer.elapsed(), method="min")
|
|
|
|
if save_delta != None and save_delta >= config.train.save_every_seconds:
|
|
save_trainer(
|
|
trainer=trainer,
|
|
tracker=tracker,
|
|
is_best=False,
|
|
is_latest=True,
|
|
samples_seen=samples_seen,
|
|
epoch=epoch,
|
|
best_validation_loss=best_validation_loss,
|
|
)
|
|
|
|
save_timer.reset()
|
|
|
|
elif save_delta is None:
|
|
click.secho(
|
|
f"Error occured reading the save time on rank: {trainer.device}",
|
|
fg="yellow",
|
|
)
|
|
|
|
# evaluate on test data
|
|
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(f"Starting Test", fg="red")
|
|
|
|
# save one last time as latest before beginning validation
|
|
|
|
save_trainer(
|
|
tracker=tracker,
|
|
trainer=trainer,
|
|
is_best=False,
|
|
is_latest=True,
|
|
samples_seen=samples_seen,
|
|
epoch=epoch,
|
|
best_validation_loss=best_validation_loss,
|
|
)
|
|
|
|
test_loss = eval_model(
|
|
trainer=trainer,
|
|
dataloader=test_loader,
|
|
text_conditioned=config.prior.condition_on_text_encodings,
|
|
split="test",
|
|
tracker=tracker,
|
|
use_ema=True,
|
|
report_cosine=False,
|
|
report_loss=True,
|
|
timesteps=config.train.eval_timesteps,
|
|
loss_type=config.prior.loss_type,
|
|
)
|
|
|
|
if test_loss < best_validation_loss:
|
|
best_validation_loss = test_loss
|
|
|
|
# go save the model as best
|
|
|
|
save_trainer(
|
|
trainer=trainer,
|
|
tracker=tracker,
|
|
is_best=True,
|
|
is_latest=False,
|
|
samples_seen=samples_seen,
|
|
epoch=epoch,
|
|
best_validation_loss=test_loss,
|
|
)
|
|
|
|
|
|
def initialize_training(config_file, accelerator):
|
|
"""
|
|
Parse the configuration file, and prepare everything necessary for training
|
|
"""
|
|
# load the configuration file
|
|
if accelerator.is_main_process:
|
|
click.secho(f"Loading configuration from {config_file}", fg="green")
|
|
|
|
config = TrainDiffusionPriorConfig.from_json_path(config_file)
|
|
|
|
# seed
|
|
|
|
set_seed(config.train.random_seed)
|
|
|
|
# get a device
|
|
|
|
device = accelerator.device
|
|
|
|
# make the trainer (will automatically distribute if possible & configured)
|
|
|
|
trainer: DiffusionPriorTrainer = make_model(
|
|
config.prior, config.train, device, accelerator
|
|
).to(device)
|
|
|
|
# create a tracker
|
|
|
|
tracker = create_tracker(
|
|
accelerator, config, config_file, dummy=accelerator.process_index != 0
|
|
)
|
|
|
|
# reload from chcekpoint
|
|
|
|
if tracker.can_recall:
|
|
current_epoch, best_validation_loss, samples_seen = recall_trainer(
|
|
tracker=tracker, trainer=trainer
|
|
)
|
|
|
|
# display best values
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(f"Current Epoch: {current_epoch} | Best Val Loss: {best_validation_loss} | Samples Seen: {samples_seen}", fg="yellow")
|
|
|
|
# update config to reflect recalled values
|
|
config.train.num_samples_seen = samples_seen
|
|
config.train.current_epoch = current_epoch
|
|
config.train.best_validation_loss = best_validation_loss
|
|
|
|
# fetch and prepare data
|
|
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho("Grabbing data...", fg="blue", blink=True)
|
|
|
|
trainer.accelerator.wait_for_everyone()
|
|
img_reader = get_reader(
|
|
text_conditioned=trainer.text_conditioned,
|
|
img_url=config.data.image_url,
|
|
meta_url=config.data.meta_url,
|
|
)
|
|
|
|
# calculate start point within epoch
|
|
|
|
trainer.accelerator.wait_for_everyone()
|
|
|
|
train_loader, eval_loader, test_loader = make_splits(
|
|
text_conditioned=trainer.text_conditioned,
|
|
batch_size=config.data.batch_size,
|
|
num_data_points=config.data.num_data_points,
|
|
train_split=config.data.splits.train,
|
|
eval_split=config.data.splits.val,
|
|
image_reader=img_reader,
|
|
rank=accelerator.state.process_index,
|
|
world_size=accelerator.state.num_processes,
|
|
start=0,
|
|
)
|
|
|
|
# update the start point to finish out the epoch on a resumed run
|
|
|
|
if tracker.can_recall:
|
|
samples_seen = config.train.num_samples_seen
|
|
length = (
|
|
config.data.num_data_points
|
|
if samples_seen <= img_reader.count
|
|
else img_reader.count
|
|
)
|
|
scaled_samples = length * config.train.current_epoch
|
|
start_point = (
|
|
scaled_samples - samples_seen if scaled_samples > samples_seen else samples_seen
|
|
)
|
|
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(f"Resuming at sample: {start_point}", fg="yellow")
|
|
|
|
train_loader.dataset.set_start(start_point)
|
|
|
|
# start training
|
|
|
|
if trainer.accelerator.is_main_process:
|
|
click.secho(
|
|
f"Beginning Prior Training : Distributed={accelerator.state.distributed_type != accelerate_dataclasses.DistributedType.NO}",
|
|
fg="yellow",
|
|
)
|
|
|
|
train(
|
|
trainer=trainer,
|
|
tracker=tracker,
|
|
train_loader=train_loader,
|
|
eval_loader=eval_loader,
|
|
test_loader=test_loader,
|
|
config=config,
|
|
)
|
|
|
|
|
|
@click.command()
|
|
@click.option("--config_file", default="configs/train_prior_config.example.json")
|
|
def main(config_file):
|
|
# start HFA
|
|
accelerator = Accelerator()
|
|
|
|
# setup training
|
|
initialize_training(config_file, accelerator)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|