import math from tqdm import tqdm from inspect import isfunction import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import Rearrange from einops_exts import rearrange_many, repeat_many, check_shape from einops_exts.torch import EinopsToAndFrom from kornia.filters import filter2d from dalle2_pytorch.tokenizer import tokenizer # use x-clip from x_clip import CLIP # helper functions def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def is_list_str(x): if not isinstance(x, (list, tuple)): return False return all([type(el) == str for el in x]) # for controlling freezing of CLIP def set_module_requires_grad_(module, requires_grad): for param in module.parameters(): param.requires_grad = requires_grad def freeze_all_layers_(module): set_module_requires_grad_(module, False) def unfreeze_all_layers_(module): set_module_requires_grad_(module, True) def freeze_model_and_make_eval_(model): model.eval() freeze_all_layers_(model) # tensor helpers def l2norm(t): return F.normalize(t, dim = -1) # classifier free guidance functions def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob # gaussian diffusion helper functions def extract(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) noise = lambda: torch.randn(shape, device=device) return repeat_noise() if repeat else noise() def cosine_beta_schedule(timesteps, s = 0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 x = torch.linspace(0, steps, steps) alphas_cumprod = torch.cos(((x / steps) + s) / (1 + s) * torch.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return torch.clip(betas, 0, 0.999) # diffusion prior class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): squared_sum = (x ** 2).sum(dim = -1, keepdim = True) inv_norm = torch.rsqrt(squared_sum + self.eps) return x * inv_norm * self.gamma * self.scale class ChanRMSNorm(RMSNorm): def forward(self, x): squared_sum = (x ** 2).sum(dim = 1, keepdim = True) inv_norm = torch.rsqrt(squared_sum + self.eps) return x * inv_norm * rearrange(self.gamma, 'c -> 1 c 1 1') * self.scale class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x # mlp class MLP(nn.Module): def __init__( self, dim_in, dim_out, *, expansion_factor = 2., depth = 2, norm = False, ): super().__init__() hidden_dim = int(expansion_factor * dim_out) norm_fn = lambda: nn.LayerNorm(hidden_dim) if norm else nn.Identity() layers = [nn.Sequential( nn.Linear(dim_in, hidden_dim), nn.SiLU(), norm_fn() )] for _ in range(depth - 1): layers.append(nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.SiLU(), norm_fn() )) layers.append(nn.Linear(hidden_dim, dim_out)) self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x.float()) # feedforward class SwiGLU(nn.Module): """ used successfully in https://arxiv.org/abs/2204.0231 """ def forward(self, x): x, gate = x.chunk(2, dim = -1) return x * F.silu(gate) def FeedForward(dim, mult = 4, dropout = 0., post_activation_norm = False): """ post-activation norm https://arxiv.org/abs/2110.09456 """ inner_dim = int(mult * dim) return nn.Sequential( RMSNorm(dim), nn.Linear(dim, inner_dim * 2, bias = False), SwiGLU(), RMSNorm(inner_dim) if post_activation_norm else nn.Identity(), nn.Dropout(dropout), nn.Linear(inner_dim, dim, bias = False) ) # attention class Attention(nn.Module): def __init__( self, dim, *, dim_head = 64, heads = 8, dropout = 0., causal = False ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads self.causal = causal self.norm = RMSNorm(dim) self.dropout = nn.Dropout(dropout) self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, dim_head * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x, mask = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)) q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) # add null key / value for classifier free guidance in prior net nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b 1 d', b = b) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) q = q * self.scale sim = einsum('b h i d, b j d -> b h i j', q, k) max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) if self.causal: i, j = sim.shape[-2:] causal_mask = torch.ones((i, j), dtype = torch.bool, device = device).triu(j - i + 1) sim = sim.masked_fill(causal_mask, max_neg_value) sim = sim - sim.amax(dim = -1, keepdim = True) attn = sim.softmax(dim = -1) attn = self.dropout(attn) out = einsum('b h i j, b j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class CausalTransformer(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, ff_mult = 4, norm_out = False, attn_dropout = 0., ff_dropout = 0. ): super().__init__() # todo - bring in rotary embeddings or alibi self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm = RMSNorm(dim) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options def forward( self, x, mask = None # we will need a mask here, due to variable length of the text encodings - also offer dalle1 strategy with padding token embeddings ): for attn, ff in self.layers: x = attn(x, mask = mask) + x x = ff(x) + x return self.norm(x) class DiffusionPriorNetwork(nn.Module): def __init__( self, dim, num_timesteps = None, **kwargs ): super().__init__() self.time_embeddings = nn.Embedding(num_timesteps, dim) if exists(num_timesteps) else nn.Sequential(Rearrange('b -> b 1'), MLP(1, dim)) # also offer a continuous version of timestep embeddings, with a 2 layer MLP self.learned_query = nn.Parameter(torch.randn(dim)) self.causal_transformer = CausalTransformer(dim = dim, **kwargs) def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, image_embed, diffusion_timesteps, *, text_encodings, text_embed, mask = None, cond_drop_prob = 0.2 ): batch, text_enc_len, device = image_embed.shape[0], text_encodings.shape[-2], image_embed.device # in section 2.2, last paragraph # "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction" text_embed, image_embed = rearrange_many((text_embed, image_embed), 'b d -> b 1 d') # whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different) # but let's just do it right if exists(mask): not_all_masked_out = mask.any(dim = -1) mask = torch.cat((mask, rearrange(not_all_masked_out, 'b -> b 1')), dim = 1) if exists(mask): mask = F.pad(mask, (0, 2), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query time_embed = self.time_embeddings(diffusion_timesteps) time_embed = rearrange(time_embed, 'b d -> b 1 d') learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch) tokens = torch.cat(( text_encodings, text_embed, time_embed, learned_queries ), dim = -2) # mask if it doesn't exist if not exists(mask): mask = torch.ones((batch, text_enc_len), device = device, dtype = torch.bool) # classifier free guidance cond_prob_mask = prob_mask_like((batch,), cond_drop_prob, device = device) mask &= rearrange(cond_prob_mask, 'b -> b 1') # attend tokens = self.causal_transformer(tokens, mask = mask) # get learned query, which should predict the image embedding (per DDPM timestep) pred_image_embed = tokens[..., -1, :] return pred_image_embed class DiffusionPrior(nn.Module): def __init__( self, net, *, clip, timesteps = 1000, cond_drop_prob = 0.2, loss_type = 'l1', predict_x0 = True ): super().__init__() assert isinstance(clip, CLIP) freeze_model_and_make_eval_(clip) self.clip = clip self.net = net self.image_embed_dim = clip.dim_latent self.channels = clip.image_channels self.image_size = clip.image_size self.cond_drop_prob = cond_drop_prob self.predict_x0 = predict_x0 # in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both. betas = cosine_beta_schedule(timesteps) alphas = 1. - betas alphas_cumprod = torch.cumprod(alphas, axis=0) alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (0, 1), value = 1.) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.loss_type = loss_type self.register_buffer('betas', betas) self.register_buffer('alphas_cumprod', alphas_cumprod) self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod)) self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod)) self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod)) self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod)) self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1)) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) self.register_buffer('posterior_variance', posterior_variance) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20))) self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)) self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)) def get_image_embed(self, image): image_encoding = self.clip.visual_transformer(image) image_cls = image_encoding[:, 0] image_embed = self.clip.to_visual_latent(image_cls) return l2norm(image_embed) def get_text_cond(self, text): text_encodings = self.clip.text_transformer(text) text_cls, text_encodings = text_encodings[:, 0], text_encodings[:, 1:] text_embed = self.clip.to_text_latent(text_cls) text_embed = l2norm(text_embed) return dict(text_encodings = text_encodings, text_embed = text_embed, mask = text != 0) def q_mean_variance(self, x_start, t): mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start variance = extract(1. - self.alphas_cumprod, t, x_start.shape) log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def predict_start_from_noise(self, x_t, t, noise): return ( extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, x, t, text_cond, clip_denoised: bool): if self.predict_x0: x_recon = self.net(x, t, **text_cond) # not 100% sure of this above line - for any spectators, let me know in the github issues (or through a pull request) if you know how to correctly do this # i'll be rereading https://arxiv.org/abs/2111.14822, where i think a similar approach is taken else: x_recon = self.predict_start_from_noise(x, t = t, noise = self.net(x, t, **text_cond)) if clip_denoised: x_recon.clamp_(-1., 1.) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, t, text_cond = None, clip_denoised = True, repeat_noise = False): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, text_cond = text_cond, clip_denoised = clip_denoised) noise = noise_like(x.shape, device, repeat_noise) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def p_sample_loop(self, shape, text_cond): device = self.betas.device b = shape[0] img = torch.randn(shape, device=device) for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps): img = self.p_sample(img, torch.full((b,), i, device = device, dtype = torch.long), text_cond = text_cond) return img @torch.no_grad() def sample(self, text, num_samples_per_batch = 2): # in the paper, what they did was # sample 2 image embeddings, choose the top 1 similarity, as judged by CLIP text = repeat(text, 'b ... -> (b r) ...', r = num_samples_per_batch) batch_size = text.shape[0] image_embed_dim = self.image_embed_dim text_cond = self.get_text_cond(text) image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond) text_embeds = text_cond['text_embed'] text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch) image_embeds = rearrange(image_embeds, '(b r) d -> b r d', r = num_samples_per_batch) text_image_sims = einsum('b r d, b r d -> b r', l2norm(text_embeds), l2norm(image_embeds)) top_sim_indices = text_image_sims.topk(k = 1).indices top_sim_indices = repeat(top_sim_indices, 'b 1 -> b 1 d', d = image_embed_dim) top_image_embeds = image_embeds.gather(1, top_sim_indices) return rearrange(top_image_embeds, 'b 1 d -> b d') def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def p_losses(self, image_embed, t, text_cond, noise = None): noise = default(noise, lambda: torch.randn_like(image_embed)) image_embed_noisy = self.q_sample(x_start = image_embed, t = t, noise = noise) x_recon = self.net( image_embed_noisy, t, cond_drop_prob = self.cond_drop_prob, **text_cond ) to_predict = noise if not self.predict_x0 else image_embed if self.loss_type == 'l1': loss = F.l1_loss(to_predict, x_recon) elif self.loss_type == 'l2': loss = F.mse_loss(to_predict, x_recon) else: raise NotImplementedError() return loss def forward(self, text, image, *args, **kwargs): b, device, img_size, = image.shape[0], image.device, self.image_size check_shape(image, 'b c h w', h = img_size, w = img_size, c = self.channels) times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long) image_embed = self.get_image_embed(image) text_cond = self.get_text_cond(text) loss = self.p_losses(image_embed, times, text_cond = text_cond, *args, **kwargs) return loss # decoder def Upsample(dim): return nn.ConvTranspose2d(dim, dim, 4, 2, 1) def Downsample(dim): return nn.Conv2d(dim, dim, 4, 2, 1) class Blur(nn.Module): def __init__(self): super().__init__() filt = torch.Tensor([1, 2, 1]) self.register_buffer('filt', filt) def forward(self, x): filt = self.filt filt = rearrange(filt, '... j -> ... 1 j') * rearrange(flit, '... i -> ... i 1') return filter2d(x, filt, normalized = True) class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device = x.device) * -emb) emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j') return torch.cat((emb.sin(), emb.cos()), dim = -1) class ConvNextBlock(nn.Module): """ https://arxiv.org/abs/2201.03545 """ def __init__( self, dim, dim_out, *, cond_dim = None, mult = 2, norm = True ): super().__init__() need_projection = dim != dim_out self.cross_attn = None if exists(cond_dim): self.cross_attn = EinopsToAndFrom( 'b c h w', 'b (h w) c', CrossAttention( dim = dim, context_dim = cond_dim ) ) self.ds_conv = nn.Conv2d(dim, dim, 7, padding = 3, groups = dim) inner_dim = int(dim_out * mult) self.net = nn.Sequential( ChanRMSNorm(dim) if norm else nn.Identity(), nn.Conv2d(dim, inner_dim, 3, padding = 1), nn.GELU(), nn.Conv2d(inner_dim, dim_out, 3, padding = 1) ) self.res_conv = nn.Conv2d(dim, dim_out, 1) if need_projection else nn.Identity() def forward(self, x, cond = None): h = self.ds_conv(x) if exists(self.cross_attn): assert exists(cond) h = self.cross_attn(h, context = cond) + h h = self.net(h) return h + self.res_conv(x) class CrossAttention(nn.Module): def __init__( self, dim, *, context_dim = None, dim_head = 64, heads = 8, dropout = 0., ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads context_dim = default(context_dim, dim) self.norm = RMSNorm(dim) self.norm_context = RMSNorm(context_dim) self.dropout = nn.Dropout(dropout) self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x, context, mask = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) context = self.norm_context(context) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = self.heads) # add null key / value for classifier free guidance in prior net nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'd -> b h 1 d', h = self.heads, b = b) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) sim = sim - sim.amax(dim = -1, keepdim = True) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Unet(nn.Module): def __init__( self, dim, *, image_embed_dim, cond_dim = None, num_image_tokens = 4, out_dim = None, dim_mults=(1, 2, 4, 8), channels = 3, ): super().__init__() self.channels = channels dims = [channels, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) # time, image embeddings, and optional text encoding cond_dim = default(cond_dim, dim) self.time_mlp = nn.Sequential( SinusoidalPosEmb(dim), nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, cond_dim), Rearrange('b d -> b 1 d') ) self.image_to_cond = nn.Sequential( nn.Linear(image_embed_dim, cond_dim * num_image_tokens), Rearrange('b (n d) -> b n d', n = num_image_tokens) ) if image_embed_dim != cond_dim else nn.Identity() self.text_to_cond = nn.LazyLinear(cond_dim) # for classifier free guidance self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim)) self.null_text_embed = nn.Parameter(torch.randn(1, 1, cond_dim)) # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append(nn.ModuleList([ ConvNextBlock(dim_in, dim_out, norm = ind != 0), ConvNextBlock(dim_out, dim_out, cond_dim = cond_dim), Downsample(dim_out) if not is_last else nn.Identity() ])) mid_dim = dims[-1] self.mid_block1 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim) self.mid_attn = EinopsToAndFrom('b c h w', 'b (h w) c', Residual(Attention(mid_dim))) self.mid_block2 = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim) for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): is_last = ind >= (num_resolutions - 1) self.ups.append(nn.ModuleList([ ConvNextBlock(dim_out * 2, dim_in, cond_dim = cond_dim), ConvNextBlock(dim_in, dim_in, cond_dim = cond_dim), Upsample(dim_in) if not is_last else nn.Identity() ])) out_dim = default(out_dim, channels) self.final_conv = nn.Sequential( ConvNextBlock(dim, dim), nn.Conv2d(dim, out_dim, 1) ) def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, time, *, image_embed, text_encodings = None, cond_drop_prob = 0. ): batch_size, device = x.shape[0], x.device time_tokens = self.time_mlp(time) cond_prob_mask = prob_mask_like((batch_size,), cond_drop_prob, device = device) cond_prob_mask = rearrange(cond_prob_mask, 'b -> b 1 1') # mask out image embedding depending on condition dropout # for classifier free guidance image_tokens = self.image_to_cond(image_embed) image_tokens = torch.where( cond_prob_mask, image_tokens, self.null_image_embed ) # take care of text encodings (optional) if exists(text_encodings): text_tokens = self.text_to_cond(text_encodings) text_tokens = torch.where( cond_prob_mask, text_tokens, self.null_text_embed ) # main conditioning tokens (c) c = torch.cat((time_tokens, image_tokens), dim = -2) # text and image conditioning tokens (mid_c) # to save on compute, only do cross attention based conditioning on the inner most layers of the Unet mid_c = c if not exists(text_encodings) else torch.cat((c, text_tokens), dim = -2) # go through the layers of the unet, down and up hiddens = [] for convnext, convnext2, downsample in self.downs: x = convnext(x, c) x = convnext2(x, c) hiddens.append(x) x = downsample(x) x = self.mid_block1(x, mid_c) x = self.mid_attn(x) x = self.mid_block2(x, mid_c) for convnext, convnext2, upsample in self.ups: x = torch.cat((x, hiddens.pop()), dim=1) x = convnext(x, c) x = convnext2(x, c) x = upsample(x) return self.final_conv(x) class Decoder(nn.Module): def __init__( self, net, *, clip, timesteps = 1000, cond_drop_prob = 0.2, loss_type = 'l1' ): super().__init__() assert isinstance(clip, CLIP) freeze_model_and_make_eval_(clip) self.clip = clip self.net = net self.channels = clip.image_channels self.image_size = clip.image_size self.cond_drop_prob = cond_drop_prob betas = cosine_beta_schedule(timesteps) alphas = 1. - betas alphas_cumprod = torch.cumprod(alphas, axis=0) alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (0, 1), value = 1.) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.loss_type = loss_type self.register_buffer('betas', betas) self.register_buffer('alphas_cumprod', alphas_cumprod) self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod)) self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod)) self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod)) self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod)) self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1)) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) self.register_buffer('posterior_variance', posterior_variance) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20))) self.register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)) self.register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)) def get_text_encodings(self, text): text_encodings = self.clip.text_transformer(text) return text_encodings[:, 1:] def get_image_embed(self, image): image_encoding = self.clip.visual_transformer(image) image_cls = image_encoding[:, 0] image_embed = self.clip.to_visual_latent(image_cls) return l2norm(image_embed) def q_mean_variance(self, x_start, t): mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start variance = extract(1. - self.alphas_cumprod, t, x_start.shape) log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def predict_start_from_noise(self, x_t, t, noise): return ( extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, x, t, image_embed, text_encodings = None, clip_denoised = True, cond_scale = 1.): x_recon = self.predict_start_from_noise(x, t = t, noise = self.net.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale)) if clip_denoised: x_recon.clamp_(-1., 1.) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, t, image_embed, text_encodings = None, cond_scale = 1., clip_denoised = True, repeat_noise = False): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance = self.p_mean_variance(x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, clip_denoised = clip_denoised) noise = noise_like(x.shape, device, repeat_noise) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise @torch.no_grad() def p_sample_loop(self, shape, image_embed, text_encodings = None, cond_scale = 1): device = self.betas.device b = shape[0] img = torch.randn(shape, device=device) for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps): img = self.p_sample(img, torch.full((b,), i, device = device, dtype = torch.long), image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale) return img @torch.no_grad() def sample(self, image_embed, text = None, cond_scale = 1.): batch_size = image_embed.shape[0] image_size = self.image_size channels = self.channels text_encodings = self.get_text_encodings(text) if exists(text) else None return self.p_sample_loop((batch_size, channels, image_size, image_size), image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale) def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def p_losses(self, x_start, t, *, image_embed, text_encodings = None, noise = None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start = x_start, t = t, noise = noise) x_recon = self.net( x_noisy, t, image_embed = image_embed, text_encodings = text_encodings, cond_drop_prob = self.cond_drop_prob ) if self.loss_type == 'l1': loss = F.l1_loss(noise, x_recon) elif self.loss_type == 'l2': loss = F.mse_loss(noise, x_recon) else: raise NotImplementedError() return loss def forward(self, image, text = None): b, device, img_size, = image.shape[0], image.device, self.image_size check_shape(image, 'b c h w', h = img_size, w = img_size, c = self.channels) times = torch.randint(0, self.num_timesteps, (b,), device = device, dtype = torch.long) image_embed = self.get_image_embed(image) text_encodings = self.get_text_encodings(text) if exists(text) else None loss = self.p_losses(image, times, image_embed = image_embed, text_encodings = text_encodings) return loss # main class class DALLE2(nn.Module): def __init__( self, *, prior, decoder, prior_num_samples = 2 ): super().__init__() assert isinstance(prior, DiffusionPrior) assert isinstance(decoder, Decoder) self.prior = prior self.decoder = decoder self.prior_num_samples = prior_num_samples @torch.no_grad() @eval_decorator def forward( self, text, cond_scale = 1. ): device = next(self.parameters()).device if isinstance(text, str) or is_list_str(text): text = [text] if not isinstance(text, (list, tuple)) else text text = tokenizer.tokenize(text).to(device) image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples) images = self.decoder.sample(image_embed, cond_scale = cond_scale) return images