import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange from einops_exts import rearrange_many, repeat_many # use x-clip from x_clip import CLIP # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # for controlling freezing of CLIP def set_module_requires_grad_(module, requires_grad): for param in module.parameters(): param.requires_grad = requires_grad def freeze_all_layers_(module): set_module_requires_grad_(module, False) def unfreeze_all_layers_(module): set_module_requires_grad_(module, True) def freeze_model_and_make_eval_(model): model.eval() freeze_all_layers_(model) # classifier free guidance functions def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob # diffusion prior class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): squared_sum = (x ** 2).sum(dim = -1, keepdim = True) inv_norm = torch.rsqrt(squared_sum + self.eps) return x * inv_norm * self.gamma * self.scale def FeedForward(dim, mult = 4, dropout = 0.): inner_dim = int(mult * dim) return nn.Sequential( RMSNorm(dim), nn.Linear(dim, inner_dim, bias = False), nn.GELU(), nn.Dropout(dropout), nn.Linear(inner_dim, dim, bias = False) ) class Attention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0. ): super().__init__() self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.norm = RMSNorm(dim) self.dropout = nn.Dropout(dropout) self.null_kv = nn.Parameter(torch.randn(heads, 2, dim_head)) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x, mask = None): b, n, device = x.shape[:2], x.device x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = rearrange_many(qkv, 'b n (h d) -> b h n d') # add null key / value for classifier free guidance in prior net nk, nv = repeat_many(self.null_kv.unbind(dim = -2), 'h d -> b h 1 d', b = b) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j') max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) causal_mask = torch.ones((n, n), dtype = torch.bool, device = device).triu(1) sim = sim.masked_fill(causal_mask, max_neg_value) sim = sim - sim.amax(dim = -1, keepdim = True) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, ff_mult = 4, norm_out = False, attn_dropout = 0., ff_dropout = 0. ): super().__init__() # todo - bring in rotary embeddings or alibi self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm = RMSNorm(dim) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options def forward( self, x, mask = None # we will need a mask here, due to variable length of the text encodings - also offer dalle1 strategy with padding token embeddings ): for attn, ff in self.layers: x = attn(x, mask = mask) + x x = ff(x) + x return self.norm(x) class DiffusionPriorNetwork(nn.Module): def __init__( self, dim, num_timesteps = 1000, **kwargs ): super().__init__() self.time_embeddings = nn.Embedding(num_timesteps, dim) # also offer a continuous version of timestep embeddings, with a 2 layer MLP self.learned_query = nn.Parameter(torch.randn(dim)) self.causal_transformer = Transformer(**kwargs) def forward_with_cond_scale( self, x, *, cond_scale = 1., **kwargs ): if cond_scale == 1: return self.forward(x, **kwargs) logits = self.forward(x, **kwargs) null_logits = self.forward(x, cond_prob_drop = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, image_embed, *, diffusion_timesteps, text_encodings, text_embed, mask = None, cond_drop_prob = 0.2 ): batch, text_enc_len, device = image_embed.shape[0], text_encodings.shape[-2], image_embed.device # in section 2.2, last paragraph # "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction" text_embed, image_embed = rearrange_many((text_embed, image_embed), 'b d -> b 1 d') if exists(mask): mask = F.pad(mask, (0, 4), value = True) # extend mask for text embedding, noised image embedding, time step embedding, and learned query time_embed = self.time_embeddings(diffusion_timesteps) learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch) tokens = torch.cat(( text_encodings, text_embed, time_embed, learned_queries ), dim = -2) # mask if it doesn't exist if not exists(mask): mask = torch.ones((batch, text_enc_len), device = device, dtype = torch.bool) # classifier free guidance cond_prob_mask = prob_mask_like((batch_size,), cond_prob_drop, device = device) mask &= rearrange(cond_prob_mask, 'b -> b 1') # attend tokens = self.causal_transformer(tokens, mask = mask) # get learned query, which should predict the image embedding (per DDPM timestep) pred_image_embed = tokens[..., -1, :] return pred_image_embed class DiffusionPrior(nn.Module): def __init__( self, *, clip ): super().__init__() assert isinstance(clip, CLIP) freeze_model_and_make_eval_(clip) def forward( self, *, text, image = None ): return image_embed # decoder def Upsample(dim): return nn.ConvTranspose2d(dim, dim, 4, 2, 1) def Downsample(dim): return nn.Conv2d(dim, dim, 4, 2, 1) class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device = x.device) * -emb) emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j') return torch.cat((emb.sin(), emb.cos()), dim = -1) class ConvNextBlock(nn.Module): """ https://arxiv.org/abs/2201.03545 """ def __init__( self, dim, dim_out, *, cond_dim = None, mult = 2, norm = True ): super().__init__() need_projection = dim != dim_out self.mlp = nn.Sequential( nn.GELU(), nn.Linear(cond_dim, dim) ) if exists(cond_dim) else None self.ds_conv = nn.Conv2d(dim, dim, 7, padding = 3, groups = dim) inner_dim = int(dim_out * mult) self.net = nn.Sequential( RMSNorm(dim) if norm else nn.Identity(), nn.Conv2d(dim, inner_dim, 3, padding = 1), nn.GELU(), nn.Conv2d(inner_dim, dim_out, 3, padding = 1) ) self.res_conv = nn.Conv2d(dim, dim_out, 1) if need_projection else nn.Identity() def forward(self, x, cond = None): h = self.ds_conv(x) if exists(self.mlp): assert exists(cond) condition = self.mlp(cond) h = h + rearrange(condition, 'b c -> b c 1 1') h = self.net(h) return h + self.res_conv(x) class Unet(nn.Module): def __init__( self, dim, *, image_embed_dim, time_dim = None, out_dim = None, dim_mults=(1, 2, 4, 8), channels = 3, ): super().__init__() self.channels = channels dims = [channels, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) time_dim = default(time_dim, dim) self.time_mlp = nn.Sequential( SinusoidalPosEmb(dim), nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim) ) self.null_image_embed = nn.Parameter(torch.randn(image_embed_dim)) cond_dim = time_dim + image_embed_dim self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append(nn.ModuleList([ ConvNextBlock(dim_in, dim_out, cond_dim = cond_dim, norm = ind != 0), ConvNextBlock(dim_out, dim_out, cond_dim = cond_dim), Downsample(dim_out) if not is_last else nn.Identity() ])) mid_dim = dims[-1] self.mid_block = ConvNextBlock(mid_dim, mid_dim, cond_dim = cond_dim) for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])): is_last = ind >= (num_resolutions - 1) self.ups.append(nn.ModuleList([ ConvNextBlock(dim_out * 2, dim_in, cond_dim = cond_dim), ConvNextBlock(dim_in, dim_in, cond_dim = cond_dim), Upsample(dim_in) if not is_last else nn.Identity() ])) out_dim = default(out_dim, channels) self.final_conv = nn.Sequential( ConvNextBlock(dim, dim), nn.Conv2d(dim, out_dim, 1) ) def forward_with_cond_scale( self, x, *, cond_scale = 1., **kwargs ): if cond_scale == 1: return self.forward(x, **kwargs) logits = self.forward(x, **kwargs) null_logits = self.forward(x, cond_prob_drop = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, *, image_embed, time, text_encodings = None, cond_prob_drop = 0. ): t = self.time_mlp(time) cond_prob_mask = prob_mask_like((batch_size,), cond_prob_drop, device = device) # mask out image embedding depending on condition dropout # for classifier free guidance image_embed = torch.where( rearrange(cond_prob_mask, 'b -> b 1'), image_embed, rearrange(self.null_image_embed, 'd -> 1 d') ) cond = torch.cat((t, image_embed), dim = -1) hiddens = [] for convnext, convnext2, downsample in self.downs: x = convnext(x, t) x = convnext2(x, t) hiddens.append(x) x = downsample(x) x = self.mid_block(x, t) for convnext, convnext2, upsample in self.ups: x = torch.cat((x, hiddens.pop()), dim=1) x = convnext(x, t) x = convnext2(x, t) x = upsample(x) return self.final_conv(x) class Decoder(nn.Module): def __init__( self, *, clip, prior ): super().__init__() assert isinstance(clip, CLIP) assert isinstance(prior, DiffusionPrior) freeze_model_and_make_eval_(clip) def forward( self, *, image, image_embed, cond_drop_prob = 0.2, # for the classifier free guidance text_embed = None # in paper, text embedding was optional for conditioning decoder ): return image # main class class DALLE2(nn.Module): def __init__( self, *, clip, prior, decoder, tokenizer = None ): super().__init__() assert isinstance(clip), CLIP assert isinstance(prior), DiffusionPrior assert isinstance(decoder), Decoder self.tokenizer = tokenizer @torch.no_grad() def forward( self, *, text ): return image