mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-21 17:34:42 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4b912a38c6 | ||
|
|
f97e55ec6b |
@@ -74,9 +74,6 @@ Settings for controlling the training hyperparameters.
|
|||||||
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
||||||
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
|
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
|
||||||
| `ema_beta` | No | `0.99` | The ema coefficient. |
|
| `ema_beta` | No | `0.99` | The ema coefficient. |
|
||||||
| `save_all` | No | `False` | If True, preserves a checkpoint for every epoch. |
|
|
||||||
| `save_latest` | No | `True` | If True, overwrites the `latest.pth` every time the model is saved. |
|
|
||||||
| `save_best` | No | `True` | If True, overwrites the `best.pth` every time the model has a lower validation loss than all previous models. |
|
|
||||||
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
|
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
|
||||||
|
|
||||||
**<ins>Evaluate</ins>:**
|
**<ins>Evaluate</ins>:**
|
||||||
@@ -163,9 +160,10 @@ All save locations have these configuration options
|
|||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
|
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
|
||||||
| `save_latest_to` | No | `latest.pth` | Sets the relative path to save the latest model to. |
|
| `save_latest_to` | No | `None` | Sets the relative path to save the latest model to. |
|
||||||
| `save_best_to` | No | `best.pth` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
| `save_best_to` | No | `None` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
||||||
| `save_type` | No | `'checkpoint'` | The type of save. `'checkpoint'` saves a checkpoint, `'model'` saves a model without any fluff (Saves with ema if ema is enabled). |
|
| `save_meta_to` | No | `None` | The path to save metadata files in. This includes the config files used to start the training. |
|
||||||
|
| `save_type` | No | `checkpoint` | The type of save. `checkpoint` saves a checkpoint, `model` saves a model without any fluff (Saves with ema if ema is enabled). |
|
||||||
|
|
||||||
If using `local`
|
If using `local`
|
||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
@@ -177,7 +175,6 @@ If using `huggingface`
|
|||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
| `save_to` | Yes | N/A | Must be `huggingface`. |
|
| `save_to` | Yes | N/A | Must be `huggingface`. |
|
||||||
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
|
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
|
||||||
| `huggingface_base_path` | Yes | N/A | The base path that checkpoints will be saved under. |
|
|
||||||
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
|
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
|
||||||
|
|
||||||
If using `wandb`
|
If using `wandb`
|
||||||
|
|||||||
@@ -56,9 +56,6 @@
|
|||||||
"use_ema": true,
|
"use_ema": true,
|
||||||
"ema_beta": 0.99,
|
"ema_beta": 0.99,
|
||||||
"amp": false,
|
"amp": false,
|
||||||
"save_all": false,
|
|
||||||
"save_latest": true,
|
|
||||||
"save_best": true,
|
|
||||||
"unet_training_mask": [true]
|
"unet_training_mask": [true]
|
||||||
},
|
},
|
||||||
"evaluate": {
|
"evaluate": {
|
||||||
@@ -96,14 +93,15 @@
|
|||||||
},
|
},
|
||||||
|
|
||||||
"save": [{
|
"save": [{
|
||||||
"save_to": "wandb"
|
"save_to": "wandb",
|
||||||
|
"save_latest_to": "latest.pth"
|
||||||
}, {
|
}, {
|
||||||
"save_to": "huggingface",
|
"save_to": "huggingface",
|
||||||
"huggingface_repo": "Veldrovive/test_model",
|
"huggingface_repo": "Veldrovive/test_model",
|
||||||
|
|
||||||
"save_all": true,
|
"save_latest_to": "path/to/model_dir/latest.pth",
|
||||||
"save_latest": true,
|
"save_best_to": "path/to/model_dir/best.pth",
|
||||||
"save_best": true,
|
"save_meta_to": "path/to/directory/for/assorted/files",
|
||||||
|
|
||||||
"save_type": "model"
|
"save_type": "model"
|
||||||
}]
|
}]
|
||||||
|
|||||||
@@ -61,9 +61,6 @@
|
|||||||
"use_ema": true,
|
"use_ema": true,
|
||||||
"ema_beta": 0.99,
|
"ema_beta": 0.99,
|
||||||
"amp": false,
|
"amp": false,
|
||||||
"save_all": false,
|
|
||||||
"save_latest": true,
|
|
||||||
"save_best": true,
|
|
||||||
"unet_training_mask": [true]
|
"unet_training_mask": [true]
|
||||||
},
|
},
|
||||||
"evaluate": {
|
"evaluate": {
|
||||||
@@ -96,7 +93,8 @@
|
|||||||
},
|
},
|
||||||
|
|
||||||
"save": [{
|
"save": [{
|
||||||
"save_to": "local"
|
"save_to": "local",
|
||||||
|
"save_latest_to": "latest.pth"
|
||||||
}]
|
}]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -4,13 +4,15 @@ import json
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import shutil
|
import shutil
|
||||||
from itertools import zip_longest
|
from itertools import zip_longest
|
||||||
from typing import Optional, List, Union
|
from typing import Any, Optional, List, Union
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
|
||||||
from dalle2_pytorch.utils import import_or_print_error
|
from dalle2_pytorch.utils import import_or_print_error
|
||||||
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
||||||
|
from dalle2_pytorch.version import __version__
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
# constants
|
# constants
|
||||||
|
|
||||||
@@ -21,16 +23,6 @@ DEFAULT_DATA_PATH = './.tracker-data'
|
|||||||
def exists(val):
|
def exists(val):
|
||||||
return val is not None
|
return val is not None
|
||||||
|
|
||||||
# load file functions
|
|
||||||
|
|
||||||
def load_wandb_file(run_path, file_path, **kwargs):
|
|
||||||
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
|
|
||||||
file_reference = wandb.restore(file_path, run_path=run_path)
|
|
||||||
return file_reference.name
|
|
||||||
|
|
||||||
def load_local_file(file_path, **kwargs):
|
|
||||||
return file_path
|
|
||||||
|
|
||||||
class BaseLogger:
|
class BaseLogger:
|
||||||
"""
|
"""
|
||||||
An abstract class representing an object that can log data.
|
An abstract class representing an object that can log data.
|
||||||
@@ -234,7 +226,7 @@ class LocalLoader(BaseLoader):
|
|||||||
|
|
||||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||||
# Makes sure the file exists to be loaded
|
# Makes sure the file exists to be loaded
|
||||||
if not self.file_path.exists():
|
if not self.file_path.exists() and not self.only_auto_resume:
|
||||||
raise FileNotFoundError(f'Model not found at {self.file_path}')
|
raise FileNotFoundError(f'Model not found at {self.file_path}')
|
||||||
|
|
||||||
def recall(self) -> dict:
|
def recall(self) -> dict:
|
||||||
@@ -283,9 +275,9 @@ def create_loader(loader_type: str, data_path: str, **kwargs) -> BaseLoader:
|
|||||||
class BaseSaver:
|
class BaseSaver:
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
data_path: str,
|
data_path: str,
|
||||||
save_latest_to: Optional[Union[str, bool]] = 'latest.pth',
|
save_latest_to: Optional[Union[str, bool]] = None,
|
||||||
save_best_to: Optional[Union[str, bool]] = 'best.pth',
|
save_best_to: Optional[Union[str, bool]] = None,
|
||||||
save_meta_to: str = './',
|
save_meta_to: Optional[str] = None,
|
||||||
save_type: str = 'checkpoint',
|
save_type: str = 'checkpoint',
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
@@ -295,10 +287,10 @@ class BaseSaver:
|
|||||||
self.save_best_to = save_best_to
|
self.save_best_to = save_best_to
|
||||||
self.saving_best = save_best_to is not None and save_best_to is not False
|
self.saving_best = save_best_to is not None and save_best_to is not False
|
||||||
self.save_meta_to = save_meta_to
|
self.save_meta_to = save_meta_to
|
||||||
|
self.saving_meta = save_meta_to is not None
|
||||||
self.save_type = save_type
|
self.save_type = save_type
|
||||||
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
|
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
|
||||||
assert self.save_meta_to is not None, '`save_meta_to` must be provided'
|
assert self.saving_latest or self.saving_best or self.saving_meta, 'At least one saving option must be specified'
|
||||||
assert self.saving_latest or self.saving_best, '`save_latest_to` or `save_best_to` must be provided'
|
|
||||||
|
|
||||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -459,6 +451,11 @@ class Tracker:
|
|||||||
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
||||||
print(f"New logger config: {self.logger.__dict__}")
|
print(f"New logger config: {self.logger.__dict__}")
|
||||||
|
|
||||||
|
self.save_metadata = dict(
|
||||||
|
version = version.parse(__version__)
|
||||||
|
) # Data that will be saved alongside the checkpoint or model
|
||||||
|
self.blacklisted_checkpoint_metadata_keys = ['scaler', 'optimizer', 'model', 'version', 'step', 'steps'] # These keys would cause us to error if we try to save them as metadata
|
||||||
|
|
||||||
assert self.logger is not None, '`logger` must be set before `init` is called'
|
assert self.logger is not None, '`logger` must be set before `init` is called'
|
||||||
if self.dummy_mode:
|
if self.dummy_mode:
|
||||||
# The only thing we need is a loader
|
# The only thing we need is a loader
|
||||||
@@ -507,8 +504,15 @@ class Tracker:
|
|||||||
# Save the config under config_name in the root folder of data_path
|
# Save the config under config_name in the root folder of data_path
|
||||||
shutil.copy(current_config_path, self.data_path / config_name)
|
shutil.copy(current_config_path, self.data_path / config_name)
|
||||||
for saver in self.savers:
|
for saver in self.savers:
|
||||||
remote_path = Path(saver.save_meta_to) / config_name
|
if saver.saving_meta:
|
||||||
saver.save_file(current_config_path, str(remote_path))
|
remote_path = Path(saver.save_meta_to) / config_name
|
||||||
|
saver.save_file(current_config_path, str(remote_path))
|
||||||
|
|
||||||
|
def add_save_metadata(self, state_dict_key: str, metadata: Any):
|
||||||
|
"""
|
||||||
|
Adds a new piece of metadata that will be saved along with the model or decoder.
|
||||||
|
"""
|
||||||
|
self.save_metadata[state_dict_key] = metadata
|
||||||
|
|
||||||
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
|
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
|
||||||
"""
|
"""
|
||||||
@@ -518,24 +522,34 @@ class Tracker:
|
|||||||
"""
|
"""
|
||||||
assert save_type in ['checkpoint', 'model']
|
assert save_type in ['checkpoint', 'model']
|
||||||
if save_type == 'checkpoint':
|
if save_type == 'checkpoint':
|
||||||
trainer.save(file_path, overwrite=True, **kwargs)
|
# Create a metadata dict without the blacklisted keys so we do not error when we create the state dict
|
||||||
|
metadata = {k: v for k, v in self.save_metadata.items() if k not in self.blacklisted_checkpoint_metadata_keys}
|
||||||
|
trainer.save(file_path, overwrite=True, **kwargs, **metadata)
|
||||||
elif save_type == 'model':
|
elif save_type == 'model':
|
||||||
if isinstance(trainer, DiffusionPriorTrainer):
|
if isinstance(trainer, DiffusionPriorTrainer):
|
||||||
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
||||||
state_dict = trainer.unwrap_model(prior).state_dict()
|
prior: DiffusionPrior = trainer.unwrap_model(prior)
|
||||||
torch.save(state_dict, file_path)
|
# Remove CLIP if it is part of the model
|
||||||
|
prior.clip = None
|
||||||
|
model_state_dict = prior.state_dict()
|
||||||
elif isinstance(trainer, DecoderTrainer):
|
elif isinstance(trainer, DecoderTrainer):
|
||||||
decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
||||||
|
# Remove CLIP if it is part of the model
|
||||||
|
decoder.clip = None
|
||||||
if trainer.use_ema:
|
if trainer.use_ema:
|
||||||
trainable_unets = decoder.unets
|
trainable_unets = decoder.unets
|
||||||
decoder.unets = trainer.unets # Swap EMA unets in
|
decoder.unets = trainer.unets # Swap EMA unets in
|
||||||
state_dict = decoder.state_dict()
|
model_state_dict = decoder.state_dict()
|
||||||
decoder.unets = trainable_unets # Swap back
|
decoder.unets = trainable_unets # Swap back
|
||||||
else:
|
else:
|
||||||
state_dict = decoder.state_dict()
|
model_state_dict = decoder.state_dict()
|
||||||
torch.save(state_dict, file_path)
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
||||||
|
state_dict = {
|
||||||
|
**self.save_metadata,
|
||||||
|
'model': model_state_dict
|
||||||
|
}
|
||||||
|
torch.save(state_dict, file_path)
|
||||||
return Path(file_path)
|
return Path(file_path)
|
||||||
|
|
||||||
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
|
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.26.1'
|
__version__ = '0.26.2'
|
||||||
|
|||||||
@@ -513,6 +513,7 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
|
|||||||
}
|
}
|
||||||
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
||||||
tracker.save_config(config_path, config_name='decoder_config.json')
|
tracker.save_config(config_path, config_name='decoder_config.json')
|
||||||
|
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
|
||||||
return tracker
|
return tracker
|
||||||
|
|
||||||
def initialize_training(config: TrainDecoderConfig, config_path):
|
def initialize_training(config: TrainDecoderConfig, config_path):
|
||||||
|
|||||||
Reference in New Issue
Block a user