mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-15 09:04:25 +01:00
Compare commits
6 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4b912a38c6 | ||
|
|
f97e55ec6b | ||
|
|
291377bb9c | ||
|
|
7f120a8b56 | ||
|
|
8c003ab1e1 | ||
|
|
723bf0abba |
106
README.md
106
README.md
@@ -628,6 +628,82 @@ images = dalle2(
|
|||||||
|
|
||||||
Now you'll just have to worry about training the Prior and the Decoder!
|
Now you'll just have to worry about training the Prior and the Decoder!
|
||||||
|
|
||||||
|
## Inpainting
|
||||||
|
|
||||||
|
Inpainting is also built into the `Decoder`. You simply have to pass in the `inpaint_image` and `inpaint_mask` (boolean tensor where `True` indicates which regions of the inpaint image to keep)
|
||||||
|
|
||||||
|
This repository uses the formulation put forth by <a href="https://arxiv.org/abs/2201.09865">Lugmayr et al. in Repaint</a>
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
from dalle2_pytorch import Unet, Decoder, CLIP
|
||||||
|
|
||||||
|
# trained clip from step 1
|
||||||
|
|
||||||
|
clip = CLIP(
|
||||||
|
dim_text = 512,
|
||||||
|
dim_image = 512,
|
||||||
|
dim_latent = 512,
|
||||||
|
num_text_tokens = 49408,
|
||||||
|
text_enc_depth = 6,
|
||||||
|
text_seq_len = 256,
|
||||||
|
text_heads = 8,
|
||||||
|
visual_enc_depth = 6,
|
||||||
|
visual_image_size = 256,
|
||||||
|
visual_patch_size = 32,
|
||||||
|
visual_heads = 8
|
||||||
|
).cuda()
|
||||||
|
|
||||||
|
# 2 unets for the decoder (a la cascading DDPM)
|
||||||
|
|
||||||
|
unet = Unet(
|
||||||
|
dim = 16,
|
||||||
|
image_embed_dim = 512,
|
||||||
|
cond_dim = 128,
|
||||||
|
channels = 3,
|
||||||
|
dim_mults = (1, 1, 1, 1)
|
||||||
|
).cuda()
|
||||||
|
|
||||||
|
|
||||||
|
# decoder, which contains the unet(s) and clip
|
||||||
|
|
||||||
|
decoder = Decoder(
|
||||||
|
clip = clip,
|
||||||
|
unet = (unet,), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
|
||||||
|
image_sizes = (256,), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
|
||||||
|
timesteps = 1000,
|
||||||
|
image_cond_drop_prob = 0.1,
|
||||||
|
text_cond_drop_prob = 0.5
|
||||||
|
).cuda()
|
||||||
|
|
||||||
|
# mock images (get a lot of this)
|
||||||
|
|
||||||
|
images = torch.randn(4, 3, 256, 256).cuda()
|
||||||
|
|
||||||
|
# feed images into decoder, specifying which unet you want to train
|
||||||
|
# each unet can be trained separately, which is one of the benefits of the cascading DDPM scheme
|
||||||
|
|
||||||
|
loss = decoder(images, unet_number = 1)
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
# do the above for many steps for both unets
|
||||||
|
|
||||||
|
mock_image_embed = torch.randn(1, 512).cuda()
|
||||||
|
|
||||||
|
# then to do inpainting
|
||||||
|
|
||||||
|
inpaint_image = torch.randn(1, 3, 256, 256).cuda() # (batch, channels, height, width)
|
||||||
|
inpaint_mask = torch.ones(1, 256, 256).bool().cuda() # (batch, height, width)
|
||||||
|
|
||||||
|
inpainted_images = decoder.sample(
|
||||||
|
image_embed = mock_image_embed,
|
||||||
|
inpaint_image = inpaint_image, # just pass in the inpaint image
|
||||||
|
inpaint_mask = inpaint_mask # and the mask
|
||||||
|
)
|
||||||
|
|
||||||
|
inpainted_images.shape # (1, 3, 256, 256)
|
||||||
|
```
|
||||||
|
|
||||||
## Experimental
|
## Experimental
|
||||||
|
|
||||||
### DALL-E2 with Latent Diffusion
|
### DALL-E2 with Latent Diffusion
|
||||||
@@ -991,26 +1067,12 @@ dataset = ImageEmbeddingDataset(
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Scripts (wip)
|
### Scripts
|
||||||
|
|
||||||
#### `train_diffusion_prior.py`
|
#### `train_diffusion_prior.py`
|
||||||
|
|
||||||
For detailed information on training the diffusion prior, please refer to the [dedicated readme](prior.md)
|
For detailed information on training the diffusion prior, please refer to the [dedicated readme](prior.md)
|
||||||
|
|
||||||
## CLI (wip)
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ dream 'sharing a sunset at the summit of mount everest with my dog'
|
|
||||||
```
|
|
||||||
|
|
||||||
Once built, images will be saved to the same directory the command is invoked
|
|
||||||
|
|
||||||
<a href="https://github.com/lucidrains/big-sleep">template</a>
|
|
||||||
|
|
||||||
## Training CLI (wip)
|
|
||||||
|
|
||||||
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
|
|
||||||
|
|
||||||
## Todo
|
## Todo
|
||||||
|
|
||||||
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
|
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
|
||||||
@@ -1049,8 +1111,8 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
|
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
|
||||||
- [x] allow for unet to be able to condition non-cross attention style as well
|
- [x] allow for unet to be able to condition non-cross attention style as well
|
||||||
- [x] speed up inference, read up on papers (ddim)
|
- [x] speed up inference, read up on papers (ddim)
|
||||||
- [ ] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
|
||||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||||
|
|
||||||
## Citations
|
## Citations
|
||||||
@@ -1169,4 +1231,14 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@article{Lugmayr2022RePaintIU,
|
||||||
|
title = {RePaint: Inpainting using Denoising Diffusion Probabilistic Models},
|
||||||
|
author = {Andreas Lugmayr and Martin Danelljan and Andr{\'e}s Romero and Fisher Yu and Radu Timofte and Luc Van Gool},
|
||||||
|
journal = {ArXiv},
|
||||||
|
year = {2022},
|
||||||
|
volume = {abs/2201.09865}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||||
|
|||||||
@@ -74,9 +74,6 @@ Settings for controlling the training hyperparameters.
|
|||||||
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
||||||
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
|
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
|
||||||
| `ema_beta` | No | `0.99` | The ema coefficient. |
|
| `ema_beta` | No | `0.99` | The ema coefficient. |
|
||||||
| `save_all` | No | `False` | If True, preserves a checkpoint for every epoch. |
|
|
||||||
| `save_latest` | No | `True` | If True, overwrites the `latest.pth` every time the model is saved. |
|
|
||||||
| `save_best` | No | `True` | If True, overwrites the `best.pth` every time the model has a lower validation loss than all previous models. |
|
|
||||||
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
|
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
|
||||||
|
|
||||||
**<ins>Evaluate</ins>:**
|
**<ins>Evaluate</ins>:**
|
||||||
@@ -163,9 +160,10 @@ All save locations have these configuration options
|
|||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
|
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
|
||||||
| `save_latest_to` | No | `latest.pth` | Sets the relative path to save the latest model to. |
|
| `save_latest_to` | No | `None` | Sets the relative path to save the latest model to. |
|
||||||
| `save_best_to` | No | `best.pth` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
| `save_best_to` | No | `None` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
||||||
| `save_type` | No | `'checkpoint'` | The type of save. `'checkpoint'` saves a checkpoint, `'model'` saves a model without any fluff (Saves with ema if ema is enabled). |
|
| `save_meta_to` | No | `None` | The path to save metadata files in. This includes the config files used to start the training. |
|
||||||
|
| `save_type` | No | `checkpoint` | The type of save. `checkpoint` saves a checkpoint, `model` saves a model without any fluff (Saves with ema if ema is enabled). |
|
||||||
|
|
||||||
If using `local`
|
If using `local`
|
||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
@@ -177,7 +175,6 @@ If using `huggingface`
|
|||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
| `save_to` | Yes | N/A | Must be `huggingface`. |
|
| `save_to` | Yes | N/A | Must be `huggingface`. |
|
||||||
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
|
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
|
||||||
| `huggingface_base_path` | Yes | N/A | The base path that checkpoints will be saved under. |
|
|
||||||
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
|
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
|
||||||
|
|
||||||
If using `wandb`
|
If using `wandb`
|
||||||
|
|||||||
@@ -56,9 +56,6 @@
|
|||||||
"use_ema": true,
|
"use_ema": true,
|
||||||
"ema_beta": 0.99,
|
"ema_beta": 0.99,
|
||||||
"amp": false,
|
"amp": false,
|
||||||
"save_all": false,
|
|
||||||
"save_latest": true,
|
|
||||||
"save_best": true,
|
|
||||||
"unet_training_mask": [true]
|
"unet_training_mask": [true]
|
||||||
},
|
},
|
||||||
"evaluate": {
|
"evaluate": {
|
||||||
@@ -96,14 +93,15 @@
|
|||||||
},
|
},
|
||||||
|
|
||||||
"save": [{
|
"save": [{
|
||||||
"save_to": "wandb"
|
"save_to": "wandb",
|
||||||
|
"save_latest_to": "latest.pth"
|
||||||
}, {
|
}, {
|
||||||
"save_to": "huggingface",
|
"save_to": "huggingface",
|
||||||
"huggingface_repo": "Veldrovive/test_model",
|
"huggingface_repo": "Veldrovive/test_model",
|
||||||
|
|
||||||
"save_all": true,
|
"save_latest_to": "path/to/model_dir/latest.pth",
|
||||||
"save_latest": true,
|
"save_best_to": "path/to/model_dir/best.pth",
|
||||||
"save_best": true,
|
"save_meta_to": "path/to/directory/for/assorted/files",
|
||||||
|
|
||||||
"save_type": "model"
|
"save_type": "model"
|
||||||
}]
|
}]
|
||||||
|
|||||||
@@ -61,9 +61,6 @@
|
|||||||
"use_ema": true,
|
"use_ema": true,
|
||||||
"ema_beta": 0.99,
|
"ema_beta": 0.99,
|
||||||
"amp": false,
|
"amp": false,
|
||||||
"save_all": false,
|
|
||||||
"save_latest": true,
|
|
||||||
"save_best": true,
|
|
||||||
"unet_training_mask": [true]
|
"unet_training_mask": [true]
|
||||||
},
|
},
|
||||||
"evaluate": {
|
"evaluate": {
|
||||||
@@ -96,7 +93,8 @@
|
|||||||
},
|
},
|
||||||
|
|
||||||
"save": [{
|
"save": [{
|
||||||
"save_to": "local"
|
"save_to": "local",
|
||||||
|
"save_latest_to": "latest.pth"
|
||||||
}]
|
}]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -2115,7 +2115,7 @@ class Decoder(nn.Module):
|
|||||||
unconditional = False, # set to True for generating images without conditioning
|
unconditional = False, # set to True for generating images without conditioning
|
||||||
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
||||||
use_dynamic_thres = False, # from the Imagen paper
|
use_dynamic_thres = False, # from the Imagen paper
|
||||||
dynamic_thres_percentile = 0.9,
|
dynamic_thres_percentile = 0.95,
|
||||||
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
|
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
|
||||||
p2_loss_weight_k = 1,
|
p2_loss_weight_k = 1,
|
||||||
ddim_sampling_eta = 1. # can be set to 0. for deterministic sampling afaict
|
ddim_sampling_eta = 1. # can be set to 0. for deterministic sampling afaict
|
||||||
@@ -2415,20 +2415,51 @@ class Decoder(nn.Module):
|
|||||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def p_sample_loop_ddpm(self, unet, shape, image_embed, noise_scheduler, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, cond_scale = 1, is_latent_diffusion = False, lowres_noise_level = None):
|
def p_sample_loop_ddpm(
|
||||||
|
self,
|
||||||
|
unet,
|
||||||
|
shape,
|
||||||
|
image_embed,
|
||||||
|
noise_scheduler,
|
||||||
|
predict_x_start = False,
|
||||||
|
learned_variance = False,
|
||||||
|
clip_denoised = True,
|
||||||
|
lowres_cond_img = None,
|
||||||
|
text_encodings = None,
|
||||||
|
cond_scale = 1,
|
||||||
|
is_latent_diffusion = False,
|
||||||
|
lowres_noise_level = None,
|
||||||
|
inpaint_image = None,
|
||||||
|
inpaint_mask = None
|
||||||
|
):
|
||||||
device = self.device
|
device = self.device
|
||||||
|
|
||||||
b = shape[0]
|
b = shape[0]
|
||||||
img = torch.randn(shape, device = device)
|
img = torch.randn(shape, device = device)
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
inpaint_image = self.normalize_img(inpaint_image)
|
||||||
|
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||||
|
inpaint_mask = resize_image_to(inpaint_mask, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = inpaint_mask.bool()
|
||||||
|
|
||||||
if not is_latent_diffusion:
|
if not is_latent_diffusion:
|
||||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||||
|
|
||||||
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
||||||
|
times = torch.full((b,), i, device = device, dtype = torch.long)
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
# following the repaint paper
|
||||||
|
# https://arxiv.org/abs/2201.09865
|
||||||
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
||||||
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
img = self.p_sample(
|
img = self.p_sample(
|
||||||
unet,
|
unet,
|
||||||
img,
|
img,
|
||||||
torch.full((b,), i, device = device, dtype = torch.long),
|
times,
|
||||||
image_embed = image_embed,
|
image_embed = image_embed,
|
||||||
text_encodings = text_encodings,
|
text_encodings = text_encodings,
|
||||||
cond_scale = cond_scale,
|
cond_scale = cond_scale,
|
||||||
@@ -2440,11 +2471,32 @@ class Decoder(nn.Module):
|
|||||||
clip_denoised = clip_denoised
|
clip_denoised = clip_denoised
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
unnormalize_img = self.unnormalize_img(img)
|
unnormalize_img = self.unnormalize_img(img)
|
||||||
return unnormalize_img
|
return unnormalize_img
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def p_sample_loop_ddim(self, unet, shape, image_embed, noise_scheduler, timesteps, eta = 1., predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, cond_scale = 1, is_latent_diffusion = False, lowres_noise_level = None):
|
def p_sample_loop_ddim(
|
||||||
|
self,
|
||||||
|
unet,
|
||||||
|
shape,
|
||||||
|
image_embed,
|
||||||
|
noise_scheduler,
|
||||||
|
timesteps,
|
||||||
|
eta = 1.,
|
||||||
|
predict_x_start = False,
|
||||||
|
learned_variance = False,
|
||||||
|
clip_denoised = True,
|
||||||
|
lowres_cond_img = None,
|
||||||
|
text_encodings = None,
|
||||||
|
cond_scale = 1,
|
||||||
|
is_latent_diffusion = False,
|
||||||
|
lowres_noise_level = None,
|
||||||
|
inpaint_image = None,
|
||||||
|
inpaint_mask = None
|
||||||
|
):
|
||||||
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
||||||
|
|
||||||
times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1]
|
times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1]
|
||||||
@@ -2452,6 +2504,13 @@ class Decoder(nn.Module):
|
|||||||
times = list(reversed(times.int().tolist()))
|
times = list(reversed(times.int().tolist()))
|
||||||
time_pairs = list(zip(times[:-1], times[1:]))
|
time_pairs = list(zip(times[:-1], times[1:]))
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
inpaint_image = self.normalize_img(inpaint_image)
|
||||||
|
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||||
|
inpaint_mask = resize_image_to(inpaint_mask, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = inpaint_mask.bool()
|
||||||
|
|
||||||
img = torch.randn(shape, device = device)
|
img = torch.randn(shape, device = device)
|
||||||
|
|
||||||
if not is_latent_diffusion:
|
if not is_latent_diffusion:
|
||||||
@@ -2463,6 +2522,12 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
# following the repaint paper
|
||||||
|
# https://arxiv.org/abs/2201.09865
|
||||||
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
||||||
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
||||||
|
|
||||||
if learned_variance:
|
if learned_variance:
|
||||||
@@ -2486,6 +2551,9 @@ class Decoder(nn.Module):
|
|||||||
c1 * noise + \
|
c1 * noise + \
|
||||||
c2 * pred_noise
|
c2 * pred_noise
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
img = self.unnormalize_img(img)
|
img = self.unnormalize_img(img)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
@@ -2585,6 +2653,8 @@ class Decoder(nn.Module):
|
|||||||
cond_scale = 1.,
|
cond_scale = 1.,
|
||||||
stop_at_unet_number = None,
|
stop_at_unet_number = None,
|
||||||
distributed = False,
|
distributed = False,
|
||||||
|
inpaint_image = None,
|
||||||
|
inpaint_mask = None
|
||||||
):
|
):
|
||||||
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
||||||
|
|
||||||
@@ -2598,6 +2668,8 @@ class Decoder(nn.Module):
|
|||||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||||
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
||||||
|
|
||||||
|
assert not (exists(inpaint_image) ^ exists(inpaint_mask)), 'inpaint_image and inpaint_mask (boolean mask of [batch, height, width]) must be both given for inpainting'
|
||||||
|
|
||||||
img = None
|
img = None
|
||||||
is_cuda = next(self.parameters()).is_cuda
|
is_cuda = next(self.parameters()).is_cuda
|
||||||
|
|
||||||
@@ -2609,6 +2681,8 @@ class Decoder(nn.Module):
|
|||||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
||||||
|
|
||||||
with context:
|
with context:
|
||||||
|
# prepare low resolution conditioning for upsamplers
|
||||||
|
|
||||||
lowres_cond_img = lowres_noise_level = None
|
lowres_cond_img = lowres_noise_level = None
|
||||||
shape = (batch_size, channel, image_size, image_size)
|
shape = (batch_size, channel, image_size, image_size)
|
||||||
|
|
||||||
@@ -2619,12 +2693,16 @@ class Decoder(nn.Module):
|
|||||||
lowres_noise_level = torch.full((batch_size,), int(self.lowres_noise_sample_level * 1000), dtype = torch.long, device = self.device)
|
lowres_noise_level = torch.full((batch_size,), int(self.lowres_noise_sample_level * 1000), dtype = torch.long, device = self.device)
|
||||||
lowres_cond_img, _ = lowres_cond.noise_image(lowres_cond_img, lowres_noise_level)
|
lowres_cond_img, _ = lowres_cond.noise_image(lowres_cond_img, lowres_noise_level)
|
||||||
|
|
||||||
|
# latent diffusion
|
||||||
|
|
||||||
is_latent_diffusion = isinstance(vae, VQGanVAE)
|
is_latent_diffusion = isinstance(vae, VQGanVAE)
|
||||||
image_size = vae.get_encoded_fmap_size(image_size)
|
image_size = vae.get_encoded_fmap_size(image_size)
|
||||||
shape = (batch_size, vae.encoded_dim, image_size, image_size)
|
shape = (batch_size, vae.encoded_dim, image_size, image_size)
|
||||||
|
|
||||||
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
||||||
|
|
||||||
|
# denoising loop for image
|
||||||
|
|
||||||
img = self.p_sample_loop(
|
img = self.p_sample_loop(
|
||||||
unet,
|
unet,
|
||||||
shape,
|
shape,
|
||||||
@@ -2638,7 +2716,9 @@ class Decoder(nn.Module):
|
|||||||
lowres_noise_level = lowres_noise_level,
|
lowres_noise_level = lowres_noise_level,
|
||||||
is_latent_diffusion = is_latent_diffusion,
|
is_latent_diffusion = is_latent_diffusion,
|
||||||
noise_scheduler = noise_scheduler,
|
noise_scheduler = noise_scheduler,
|
||||||
timesteps = sample_timesteps
|
timesteps = sample_timesteps,
|
||||||
|
inpaint_image = inpaint_image,
|
||||||
|
inpaint_mask = inpaint_mask
|
||||||
)
|
)
|
||||||
|
|
||||||
img = vae.decode(img)
|
img = vae.decode(img)
|
||||||
|
|||||||
@@ -4,13 +4,15 @@ import json
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import shutil
|
import shutil
|
||||||
from itertools import zip_longest
|
from itertools import zip_longest
|
||||||
from typing import Optional, List, Union
|
from typing import Any, Optional, List, Union
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
|
||||||
from dalle2_pytorch.utils import import_or_print_error
|
from dalle2_pytorch.utils import import_or_print_error
|
||||||
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
||||||
|
from dalle2_pytorch.version import __version__
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
# constants
|
# constants
|
||||||
|
|
||||||
@@ -21,16 +23,6 @@ DEFAULT_DATA_PATH = './.tracker-data'
|
|||||||
def exists(val):
|
def exists(val):
|
||||||
return val is not None
|
return val is not None
|
||||||
|
|
||||||
# load file functions
|
|
||||||
|
|
||||||
def load_wandb_file(run_path, file_path, **kwargs):
|
|
||||||
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
|
|
||||||
file_reference = wandb.restore(file_path, run_path=run_path)
|
|
||||||
return file_reference.name
|
|
||||||
|
|
||||||
def load_local_file(file_path, **kwargs):
|
|
||||||
return file_path
|
|
||||||
|
|
||||||
class BaseLogger:
|
class BaseLogger:
|
||||||
"""
|
"""
|
||||||
An abstract class representing an object that can log data.
|
An abstract class representing an object that can log data.
|
||||||
@@ -234,7 +226,7 @@ class LocalLoader(BaseLoader):
|
|||||||
|
|
||||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||||
# Makes sure the file exists to be loaded
|
# Makes sure the file exists to be loaded
|
||||||
if not self.file_path.exists():
|
if not self.file_path.exists() and not self.only_auto_resume:
|
||||||
raise FileNotFoundError(f'Model not found at {self.file_path}')
|
raise FileNotFoundError(f'Model not found at {self.file_path}')
|
||||||
|
|
||||||
def recall(self) -> dict:
|
def recall(self) -> dict:
|
||||||
@@ -283,9 +275,9 @@ def create_loader(loader_type: str, data_path: str, **kwargs) -> BaseLoader:
|
|||||||
class BaseSaver:
|
class BaseSaver:
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
data_path: str,
|
data_path: str,
|
||||||
save_latest_to: Optional[Union[str, bool]] = 'latest.pth',
|
save_latest_to: Optional[Union[str, bool]] = None,
|
||||||
save_best_to: Optional[Union[str, bool]] = 'best.pth',
|
save_best_to: Optional[Union[str, bool]] = None,
|
||||||
save_meta_to: str = './',
|
save_meta_to: Optional[str] = None,
|
||||||
save_type: str = 'checkpoint',
|
save_type: str = 'checkpoint',
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
@@ -295,10 +287,10 @@ class BaseSaver:
|
|||||||
self.save_best_to = save_best_to
|
self.save_best_to = save_best_to
|
||||||
self.saving_best = save_best_to is not None and save_best_to is not False
|
self.saving_best = save_best_to is not None and save_best_to is not False
|
||||||
self.save_meta_to = save_meta_to
|
self.save_meta_to = save_meta_to
|
||||||
|
self.saving_meta = save_meta_to is not None
|
||||||
self.save_type = save_type
|
self.save_type = save_type
|
||||||
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
|
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
|
||||||
assert self.save_meta_to is not None, '`save_meta_to` must be provided'
|
assert self.saving_latest or self.saving_best or self.saving_meta, 'At least one saving option must be specified'
|
||||||
assert self.saving_latest or self.saving_best, '`save_latest_to` or `save_best_to` must be provided'
|
|
||||||
|
|
||||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -459,6 +451,11 @@ class Tracker:
|
|||||||
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
||||||
print(f"New logger config: {self.logger.__dict__}")
|
print(f"New logger config: {self.logger.__dict__}")
|
||||||
|
|
||||||
|
self.save_metadata = dict(
|
||||||
|
version = version.parse(__version__)
|
||||||
|
) # Data that will be saved alongside the checkpoint or model
|
||||||
|
self.blacklisted_checkpoint_metadata_keys = ['scaler', 'optimizer', 'model', 'version', 'step', 'steps'] # These keys would cause us to error if we try to save them as metadata
|
||||||
|
|
||||||
assert self.logger is not None, '`logger` must be set before `init` is called'
|
assert self.logger is not None, '`logger` must be set before `init` is called'
|
||||||
if self.dummy_mode:
|
if self.dummy_mode:
|
||||||
# The only thing we need is a loader
|
# The only thing we need is a loader
|
||||||
@@ -507,8 +504,15 @@ class Tracker:
|
|||||||
# Save the config under config_name in the root folder of data_path
|
# Save the config under config_name in the root folder of data_path
|
||||||
shutil.copy(current_config_path, self.data_path / config_name)
|
shutil.copy(current_config_path, self.data_path / config_name)
|
||||||
for saver in self.savers:
|
for saver in self.savers:
|
||||||
remote_path = Path(saver.save_meta_to) / config_name
|
if saver.saving_meta:
|
||||||
saver.save_file(current_config_path, str(remote_path))
|
remote_path = Path(saver.save_meta_to) / config_name
|
||||||
|
saver.save_file(current_config_path, str(remote_path))
|
||||||
|
|
||||||
|
def add_save_metadata(self, state_dict_key: str, metadata: Any):
|
||||||
|
"""
|
||||||
|
Adds a new piece of metadata that will be saved along with the model or decoder.
|
||||||
|
"""
|
||||||
|
self.save_metadata[state_dict_key] = metadata
|
||||||
|
|
||||||
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
|
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
|
||||||
"""
|
"""
|
||||||
@@ -518,24 +522,34 @@ class Tracker:
|
|||||||
"""
|
"""
|
||||||
assert save_type in ['checkpoint', 'model']
|
assert save_type in ['checkpoint', 'model']
|
||||||
if save_type == 'checkpoint':
|
if save_type == 'checkpoint':
|
||||||
trainer.save(file_path, overwrite=True, **kwargs)
|
# Create a metadata dict without the blacklisted keys so we do not error when we create the state dict
|
||||||
|
metadata = {k: v for k, v in self.save_metadata.items() if k not in self.blacklisted_checkpoint_metadata_keys}
|
||||||
|
trainer.save(file_path, overwrite=True, **kwargs, **metadata)
|
||||||
elif save_type == 'model':
|
elif save_type == 'model':
|
||||||
if isinstance(trainer, DiffusionPriorTrainer):
|
if isinstance(trainer, DiffusionPriorTrainer):
|
||||||
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
||||||
state_dict = trainer.unwrap_model(prior).state_dict()
|
prior: DiffusionPrior = trainer.unwrap_model(prior)
|
||||||
torch.save(state_dict, file_path)
|
# Remove CLIP if it is part of the model
|
||||||
|
prior.clip = None
|
||||||
|
model_state_dict = prior.state_dict()
|
||||||
elif isinstance(trainer, DecoderTrainer):
|
elif isinstance(trainer, DecoderTrainer):
|
||||||
decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
||||||
|
# Remove CLIP if it is part of the model
|
||||||
|
decoder.clip = None
|
||||||
if trainer.use_ema:
|
if trainer.use_ema:
|
||||||
trainable_unets = decoder.unets
|
trainable_unets = decoder.unets
|
||||||
decoder.unets = trainer.unets # Swap EMA unets in
|
decoder.unets = trainer.unets # Swap EMA unets in
|
||||||
state_dict = decoder.state_dict()
|
model_state_dict = decoder.state_dict()
|
||||||
decoder.unets = trainable_unets # Swap back
|
decoder.unets = trainable_unets # Swap back
|
||||||
else:
|
else:
|
||||||
state_dict = decoder.state_dict()
|
model_state_dict = decoder.state_dict()
|
||||||
torch.save(state_dict, file_path)
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
||||||
|
state_dict = {
|
||||||
|
**self.save_metadata,
|
||||||
|
'model': model_state_dict
|
||||||
|
}
|
||||||
|
torch.save(state_dict, file_path)
|
||||||
return Path(file_path)
|
return Path(file_path)
|
||||||
|
|
||||||
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
|
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.25.2'
|
__version__ = '0.26.2'
|
||||||
|
|||||||
@@ -513,6 +513,7 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
|
|||||||
}
|
}
|
||||||
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
||||||
tracker.save_config(config_path, config_name='decoder_config.json')
|
tracker.save_config(config_path, config_name='decoder_config.json')
|
||||||
|
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
|
||||||
return tracker
|
return tracker
|
||||||
|
|
||||||
def initialize_training(config: TrainDecoderConfig, config_path):
|
def initialize_training(config: TrainDecoderConfig, config_path):
|
||||||
|
|||||||
Reference in New Issue
Block a user