mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-15 00:44:25 +01:00
Compare commits
12 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4b912a38c6 | ||
|
|
f97e55ec6b | ||
|
|
291377bb9c | ||
|
|
7f120a8b56 | ||
|
|
8c003ab1e1 | ||
|
|
723bf0abba | ||
|
|
d88c7ba56c | ||
|
|
3676a8ce78 | ||
|
|
da8e99ada0 | ||
|
|
6afb886cf4 | ||
|
|
c7fe4f2f44 | ||
|
|
a2ee3fa3cc |
109
README.md
109
README.md
@@ -628,6 +628,82 @@ images = dalle2(
|
|||||||
|
|
||||||
Now you'll just have to worry about training the Prior and the Decoder!
|
Now you'll just have to worry about training the Prior and the Decoder!
|
||||||
|
|
||||||
|
## Inpainting
|
||||||
|
|
||||||
|
Inpainting is also built into the `Decoder`. You simply have to pass in the `inpaint_image` and `inpaint_mask` (boolean tensor where `True` indicates which regions of the inpaint image to keep)
|
||||||
|
|
||||||
|
This repository uses the formulation put forth by <a href="https://arxiv.org/abs/2201.09865">Lugmayr et al. in Repaint</a>
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
from dalle2_pytorch import Unet, Decoder, CLIP
|
||||||
|
|
||||||
|
# trained clip from step 1
|
||||||
|
|
||||||
|
clip = CLIP(
|
||||||
|
dim_text = 512,
|
||||||
|
dim_image = 512,
|
||||||
|
dim_latent = 512,
|
||||||
|
num_text_tokens = 49408,
|
||||||
|
text_enc_depth = 6,
|
||||||
|
text_seq_len = 256,
|
||||||
|
text_heads = 8,
|
||||||
|
visual_enc_depth = 6,
|
||||||
|
visual_image_size = 256,
|
||||||
|
visual_patch_size = 32,
|
||||||
|
visual_heads = 8
|
||||||
|
).cuda()
|
||||||
|
|
||||||
|
# 2 unets for the decoder (a la cascading DDPM)
|
||||||
|
|
||||||
|
unet = Unet(
|
||||||
|
dim = 16,
|
||||||
|
image_embed_dim = 512,
|
||||||
|
cond_dim = 128,
|
||||||
|
channels = 3,
|
||||||
|
dim_mults = (1, 1, 1, 1)
|
||||||
|
).cuda()
|
||||||
|
|
||||||
|
|
||||||
|
# decoder, which contains the unet(s) and clip
|
||||||
|
|
||||||
|
decoder = Decoder(
|
||||||
|
clip = clip,
|
||||||
|
unet = (unet,), # insert both unets in order of low resolution to highest resolution (you can have as many stages as you want here)
|
||||||
|
image_sizes = (256,), # resolutions, 256 for first unet, 512 for second. these must be unique and in ascending order (matches with the unets passed in)
|
||||||
|
timesteps = 1000,
|
||||||
|
image_cond_drop_prob = 0.1,
|
||||||
|
text_cond_drop_prob = 0.5
|
||||||
|
).cuda()
|
||||||
|
|
||||||
|
# mock images (get a lot of this)
|
||||||
|
|
||||||
|
images = torch.randn(4, 3, 256, 256).cuda()
|
||||||
|
|
||||||
|
# feed images into decoder, specifying which unet you want to train
|
||||||
|
# each unet can be trained separately, which is one of the benefits of the cascading DDPM scheme
|
||||||
|
|
||||||
|
loss = decoder(images, unet_number = 1)
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
# do the above for many steps for both unets
|
||||||
|
|
||||||
|
mock_image_embed = torch.randn(1, 512).cuda()
|
||||||
|
|
||||||
|
# then to do inpainting
|
||||||
|
|
||||||
|
inpaint_image = torch.randn(1, 3, 256, 256).cuda() # (batch, channels, height, width)
|
||||||
|
inpaint_mask = torch.ones(1, 256, 256).bool().cuda() # (batch, height, width)
|
||||||
|
|
||||||
|
inpainted_images = decoder.sample(
|
||||||
|
image_embed = mock_image_embed,
|
||||||
|
inpaint_image = inpaint_image, # just pass in the inpaint image
|
||||||
|
inpaint_mask = inpaint_mask # and the mask
|
||||||
|
)
|
||||||
|
|
||||||
|
inpainted_images.shape # (1, 3, 256, 256)
|
||||||
|
```
|
||||||
|
|
||||||
## Experimental
|
## Experimental
|
||||||
|
|
||||||
### DALL-E2 with Latent Diffusion
|
### DALL-E2 with Latent Diffusion
|
||||||
@@ -991,26 +1067,12 @@ dataset = ImageEmbeddingDataset(
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Scripts (wip)
|
### Scripts
|
||||||
|
|
||||||
#### `train_diffusion_prior.py`
|
#### `train_diffusion_prior.py`
|
||||||
|
|
||||||
For detailed information on training the diffusion prior, please refer to the [dedicated readme](prior.md)
|
For detailed information on training the diffusion prior, please refer to the [dedicated readme](prior.md)
|
||||||
|
|
||||||
## CLI (wip)
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ dream 'sharing a sunset at the summit of mount everest with my dog'
|
|
||||||
```
|
|
||||||
|
|
||||||
Once built, images will be saved to the same directory the command is invoked
|
|
||||||
|
|
||||||
<a href="https://github.com/lucidrains/big-sleep">template</a>
|
|
||||||
|
|
||||||
## Training CLI (wip)
|
|
||||||
|
|
||||||
<a href="https://github.com/lucidrains/stylegan2-pytorch">template</a>
|
|
||||||
|
|
||||||
## Todo
|
## Todo
|
||||||
|
|
||||||
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
|
- [x] finish off gaussian diffusion class for latent embedding - allow for prediction of epsilon
|
||||||
@@ -1048,11 +1110,10 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
- [x] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training (doesnt work well)
|
- [x] bring in skip-layer excitations (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training (doesnt work well)
|
||||||
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
|
- [x] test out grid attention in cascading ddpm locally, decide whether to keep or remove https://arxiv.org/abs/2204.01697 (keeping, seems to be fine)
|
||||||
- [x] allow for unet to be able to condition non-cross attention style as well
|
- [x] allow for unet to be able to condition non-cross attention style as well
|
||||||
- [ ] become an expert with unets, cleanup unet code, make it fully configurable, port all learnings over to https://github.com/lucidrains/x-unet (test out unet² in ddpm repo) - consider https://github.com/lucidrains/uformer-pytorch attention-based unet
|
- [x] speed up inference, read up on papers (ddim)
|
||||||
- [ ] speed up inference, read up on papers (ddim or diffusion-gan, etc)
|
- [x] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
||||||
- [ ] figure out if possible to augment with external memory, as described in https://arxiv.org/abs/2204.11824
|
- [ ] try out the nested unet from https://arxiv.org/abs/2005.09007 after hearing several positive testimonies from researchers, for segmentation anyhow
|
||||||
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
- [ ] interface out the vqgan-vae so a pretrained one can be pulled off the shelf to validate latent diffusion + DALL-E2
|
||||||
- [ ] add inpainting ability using resampler from repaint paper https://arxiv.org/abs/2201.09865
|
|
||||||
|
|
||||||
## Citations
|
## Citations
|
||||||
|
|
||||||
@@ -1170,4 +1231,14 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@article{Lugmayr2022RePaintIU,
|
||||||
|
title = {RePaint: Inpainting using Denoising Diffusion Probabilistic Models},
|
||||||
|
author = {Andreas Lugmayr and Martin Danelljan and Andr{\'e}s Romero and Fisher Yu and Radu Timofte and Luc Van Gool},
|
||||||
|
journal = {ArXiv},
|
||||||
|
year = {2022},
|
||||||
|
volume = {abs/2201.09865}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
*Creating noise from data is easy; creating data from noise is generative modeling.* - <a href="https://arxiv.org/abs/2011.13456">Yang Song's paper</a>
|
||||||
|
|||||||
@@ -74,9 +74,6 @@ Settings for controlling the training hyperparameters.
|
|||||||
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
| `validation_samples` | No | `None` | The number of samples to use for validation. None mean the entire validation set. |
|
||||||
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
|
| `use_ema` | No | `True` | Whether to use exponential moving average models for sampling. |
|
||||||
| `ema_beta` | No | `0.99` | The ema coefficient. |
|
| `ema_beta` | No | `0.99` | The ema coefficient. |
|
||||||
| `save_all` | No | `False` | If True, preserves a checkpoint for every epoch. |
|
|
||||||
| `save_latest` | No | `True` | If True, overwrites the `latest.pth` every time the model is saved. |
|
|
||||||
| `save_best` | No | `True` | If True, overwrites the `best.pth` every time the model has a lower validation loss than all previous models. |
|
|
||||||
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
|
| `unet_training_mask` | No | `None` | A boolean array of the same length as the number of unets. If false, the unet is frozen. A value of `None` trains all unets. |
|
||||||
|
|
||||||
**<ins>Evaluate</ins>:**
|
**<ins>Evaluate</ins>:**
|
||||||
@@ -163,9 +160,10 @@ All save locations have these configuration options
|
|||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
|
| `save_to` | Yes | N/A | Must be `local`, `huggingface`, or `wandb`. |
|
||||||
| `save_latest_to` | No | `latest.pth` | Sets the relative path to save the latest model to. |
|
| `save_latest_to` | No | `None` | Sets the relative path to save the latest model to. |
|
||||||
| `save_best_to` | No | `best.pth` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
| `save_best_to` | No | `None` | Sets the relative path to save the best model to every time the model has a lower validation loss than all previous models. |
|
||||||
| `save_type` | No | `'checkpoint'` | The type of save. `'checkpoint'` saves a checkpoint, `'model'` saves a model without any fluff (Saves with ema if ema is enabled). |
|
| `save_meta_to` | No | `None` | The path to save metadata files in. This includes the config files used to start the training. |
|
||||||
|
| `save_type` | No | `checkpoint` | The type of save. `checkpoint` saves a checkpoint, `model` saves a model without any fluff (Saves with ema if ema is enabled). |
|
||||||
|
|
||||||
If using `local`
|
If using `local`
|
||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
@@ -177,7 +175,6 @@ If using `huggingface`
|
|||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
| `save_to` | Yes | N/A | Must be `huggingface`. |
|
| `save_to` | Yes | N/A | Must be `huggingface`. |
|
||||||
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
|
| `huggingface_repo` | Yes | N/A | The huggingface repository to save to. |
|
||||||
| `huggingface_base_path` | Yes | N/A | The base path that checkpoints will be saved under. |
|
|
||||||
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
|
| `token_path` | No | `None` | If logging in with the huggingface cli is not possible, point to a token file instead. |
|
||||||
|
|
||||||
If using `wandb`
|
If using `wandb`
|
||||||
|
|||||||
@@ -56,9 +56,6 @@
|
|||||||
"use_ema": true,
|
"use_ema": true,
|
||||||
"ema_beta": 0.99,
|
"ema_beta": 0.99,
|
||||||
"amp": false,
|
"amp": false,
|
||||||
"save_all": false,
|
|
||||||
"save_latest": true,
|
|
||||||
"save_best": true,
|
|
||||||
"unet_training_mask": [true]
|
"unet_training_mask": [true]
|
||||||
},
|
},
|
||||||
"evaluate": {
|
"evaluate": {
|
||||||
@@ -96,14 +93,15 @@
|
|||||||
},
|
},
|
||||||
|
|
||||||
"save": [{
|
"save": [{
|
||||||
"save_to": "wandb"
|
"save_to": "wandb",
|
||||||
|
"save_latest_to": "latest.pth"
|
||||||
}, {
|
}, {
|
||||||
"save_to": "huggingface",
|
"save_to": "huggingface",
|
||||||
"huggingface_repo": "Veldrovive/test_model",
|
"huggingface_repo": "Veldrovive/test_model",
|
||||||
|
|
||||||
"save_all": true,
|
"save_latest_to": "path/to/model_dir/latest.pth",
|
||||||
"save_latest": true,
|
"save_best_to": "path/to/model_dir/best.pth",
|
||||||
"save_best": true,
|
"save_meta_to": "path/to/directory/for/assorted/files",
|
||||||
|
|
||||||
"save_type": "model"
|
"save_type": "model"
|
||||||
}]
|
}]
|
||||||
|
|||||||
@@ -61,9 +61,6 @@
|
|||||||
"use_ema": true,
|
"use_ema": true,
|
||||||
"ema_beta": 0.99,
|
"ema_beta": 0.99,
|
||||||
"amp": false,
|
"amp": false,
|
||||||
"save_all": false,
|
|
||||||
"save_latest": true,
|
|
||||||
"save_best": true,
|
|
||||||
"unet_training_mask": [true]
|
"unet_training_mask": [true]
|
||||||
},
|
},
|
||||||
"evaluate": {
|
"evaluate": {
|
||||||
@@ -96,7 +93,8 @@
|
|||||||
},
|
},
|
||||||
|
|
||||||
"save": [{
|
"save": [{
|
||||||
"save_to": "local"
|
"save_to": "local",
|
||||||
|
"save_latest_to": "latest.pth"
|
||||||
}]
|
}]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -52,10 +52,10 @@ def first(arr, d = None):
|
|||||||
|
|
||||||
def maybe(fn):
|
def maybe(fn):
|
||||||
@wraps(fn)
|
@wraps(fn)
|
||||||
def inner(x):
|
def inner(x, *args, **kwargs):
|
||||||
if not exists(x):
|
if not exists(x):
|
||||||
return x
|
return x
|
||||||
return fn(x)
|
return fn(x, *args, **kwargs)
|
||||||
return inner
|
return inner
|
||||||
|
|
||||||
def default(val, d):
|
def default(val, d):
|
||||||
@@ -63,13 +63,13 @@ def default(val, d):
|
|||||||
return val
|
return val
|
||||||
return d() if callable(d) else d
|
return d() if callable(d) else d
|
||||||
|
|
||||||
def cast_tuple(val, length = None):
|
def cast_tuple(val, length = None, validate = True):
|
||||||
if isinstance(val, list):
|
if isinstance(val, list):
|
||||||
val = tuple(val)
|
val = tuple(val)
|
||||||
|
|
||||||
out = val if isinstance(val, tuple) else ((val,) * default(length, 1))
|
out = val if isinstance(val, tuple) else ((val,) * default(length, 1))
|
||||||
|
|
||||||
if exists(length):
|
if exists(length) and validate:
|
||||||
assert len(out) == length
|
assert len(out) == length
|
||||||
|
|
||||||
return out
|
return out
|
||||||
@@ -494,6 +494,9 @@ class NoiseScheduler(nn.Module):
|
|||||||
self.has_p2_loss_reweighting = p2_loss_weight_gamma > 0.
|
self.has_p2_loss_reweighting = p2_loss_weight_gamma > 0.
|
||||||
register_buffer('p2_loss_weight', (p2_loss_weight_k + alphas_cumprod / (1 - alphas_cumprod)) ** -p2_loss_weight_gamma)
|
register_buffer('p2_loss_weight', (p2_loss_weight_k + alphas_cumprod / (1 - alphas_cumprod)) ** -p2_loss_weight_gamma)
|
||||||
|
|
||||||
|
def sample_random_times(self, batch):
|
||||||
|
return torch.randint(0, self.num_timesteps, (batch,), device = self.betas.device, dtype = torch.long)
|
||||||
|
|
||||||
def q_posterior(self, x_start, x_t, t):
|
def q_posterior(self, x_start, x_t, t):
|
||||||
posterior_mean = (
|
posterior_mean = (
|
||||||
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
||||||
@@ -519,7 +522,7 @@ class NoiseScheduler(nn.Module):
|
|||||||
|
|
||||||
def predict_noise_from_start(self, x_t, t, x0):
|
def predict_noise_from_start(self, x_t, t, x0):
|
||||||
return (
|
return (
|
||||||
(x0 - extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t) / \
|
(extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
|
||||||
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -1243,7 +1246,7 @@ class DiffusionPrior(nn.Module):
|
|||||||
# timestep conditioning from ddpm
|
# timestep conditioning from ddpm
|
||||||
|
|
||||||
batch, device = image_embed.shape[0], image_embed.device
|
batch, device = image_embed.shape[0], image_embed.device
|
||||||
times = torch.randint(0, self.noise_scheduler.num_timesteps, (batch,), device = device, dtype = torch.long)
|
times = self.noise_scheduler.sample_random_times(batch)
|
||||||
|
|
||||||
# scale image embed (Katherine)
|
# scale image embed (Katherine)
|
||||||
|
|
||||||
@@ -1539,9 +1542,10 @@ class Unet(nn.Module):
|
|||||||
self_attn = False,
|
self_attn = False,
|
||||||
attn_dim_head = 32,
|
attn_dim_head = 32,
|
||||||
attn_heads = 16,
|
attn_heads = 16,
|
||||||
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/
|
||||||
|
lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen
|
||||||
sparse_attn = False,
|
sparse_attn = False,
|
||||||
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention)
|
||||||
cond_on_text_encodings = False,
|
cond_on_text_encodings = False,
|
||||||
max_text_len = 256,
|
max_text_len = 256,
|
||||||
cond_on_image_embeds = False,
|
cond_on_image_embeds = False,
|
||||||
@@ -1550,6 +1554,7 @@ class Unet(nn.Module):
|
|||||||
init_conv_kernel_size = 7,
|
init_conv_kernel_size = 7,
|
||||||
resnet_groups = 8,
|
resnet_groups = 8,
|
||||||
num_resnet_blocks = 2,
|
num_resnet_blocks = 2,
|
||||||
|
init_cross_embed = True,
|
||||||
init_cross_embed_kernel_sizes = (3, 7, 15),
|
init_cross_embed_kernel_sizes = (3, 7, 15),
|
||||||
cross_embed_downsample = False,
|
cross_embed_downsample = False,
|
||||||
cross_embed_downsample_kernel_sizes = (2, 4),
|
cross_embed_downsample_kernel_sizes = (2, 4),
|
||||||
@@ -1578,7 +1583,7 @@ class Unet(nn.Module):
|
|||||||
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
init_channels = channels if not lowres_cond else channels * 2 # in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis
|
||||||
init_dim = default(init_dim, dim)
|
init_dim = default(init_dim, dim)
|
||||||
|
|
||||||
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1)
|
self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2)
|
||||||
|
|
||||||
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
|
dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
|
||||||
in_out = list(zip(dims[:-1], dims[1:]))
|
in_out = list(zip(dims[:-1], dims[1:]))
|
||||||
@@ -1628,6 +1633,17 @@ class Unet(nn.Module):
|
|||||||
self.text_to_cond = nn.Linear(text_embed_dim, cond_dim)
|
self.text_to_cond = nn.Linear(text_embed_dim, cond_dim)
|
||||||
self.text_embed_dim = text_embed_dim
|
self.text_embed_dim = text_embed_dim
|
||||||
|
|
||||||
|
# low resolution noise conditiong, based on Imagen's upsampler training technique
|
||||||
|
|
||||||
|
self.lowres_noise_cond = lowres_noise_cond
|
||||||
|
|
||||||
|
self.to_lowres_noise_cond = nn.Sequential(
|
||||||
|
SinusoidalPosEmb(dim),
|
||||||
|
nn.Linear(dim, time_cond_dim),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Linear(time_cond_dim, time_cond_dim)
|
||||||
|
) if lowres_noise_cond else None
|
||||||
|
|
||||||
# finer control over whether to condition on image embeddings and text encodings
|
# finer control over whether to condition on image embeddings and text encodings
|
||||||
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
|
# so one can have the latter unets in the cascading DDPMs only focus on super-resoluting
|
||||||
|
|
||||||
@@ -1744,15 +1760,17 @@ class Unet(nn.Module):
|
|||||||
self,
|
self,
|
||||||
*,
|
*,
|
||||||
lowres_cond,
|
lowres_cond,
|
||||||
|
lowres_noise_cond,
|
||||||
channels,
|
channels,
|
||||||
channels_out,
|
channels_out,
|
||||||
cond_on_image_embeds,
|
cond_on_image_embeds,
|
||||||
cond_on_text_encodings
|
cond_on_text_encodings,
|
||||||
):
|
):
|
||||||
if lowres_cond == self.lowres_cond and \
|
if lowres_cond == self.lowres_cond and \
|
||||||
channels == self.channels and \
|
channels == self.channels and \
|
||||||
cond_on_image_embeds == self.cond_on_image_embeds and \
|
cond_on_image_embeds == self.cond_on_image_embeds and \
|
||||||
cond_on_text_encodings == self.cond_on_text_encodings and \
|
cond_on_text_encodings == self.cond_on_text_encodings and \
|
||||||
|
cond_on_lowres_noise == self.cond_on_lowres_noise and \
|
||||||
channels_out == self.channels_out:
|
channels_out == self.channels_out:
|
||||||
return self
|
return self
|
||||||
|
|
||||||
@@ -1761,7 +1779,8 @@ class Unet(nn.Module):
|
|||||||
channels = channels,
|
channels = channels,
|
||||||
channels_out = channels_out,
|
channels_out = channels_out,
|
||||||
cond_on_image_embeds = cond_on_image_embeds,
|
cond_on_image_embeds = cond_on_image_embeds,
|
||||||
cond_on_text_encodings = cond_on_text_encodings
|
cond_on_text_encodings = cond_on_text_encodings,
|
||||||
|
lowres_noise_cond = lowres_noise_cond
|
||||||
)
|
)
|
||||||
|
|
||||||
return self.__class__(**{**self._locals, **updated_kwargs})
|
return self.__class__(**{**self._locals, **updated_kwargs})
|
||||||
@@ -1787,6 +1806,7 @@ class Unet(nn.Module):
|
|||||||
*,
|
*,
|
||||||
image_embed,
|
image_embed,
|
||||||
lowres_cond_img = None,
|
lowres_cond_img = None,
|
||||||
|
lowres_noise_level = None,
|
||||||
text_encodings = None,
|
text_encodings = None,
|
||||||
image_cond_drop_prob = 0.,
|
image_cond_drop_prob = 0.,
|
||||||
text_cond_drop_prob = 0.,
|
text_cond_drop_prob = 0.,
|
||||||
@@ -1815,6 +1835,13 @@ class Unet(nn.Module):
|
|||||||
time_tokens = self.to_time_tokens(time_hiddens)
|
time_tokens = self.to_time_tokens(time_hiddens)
|
||||||
t = self.to_time_cond(time_hiddens)
|
t = self.to_time_cond(time_hiddens)
|
||||||
|
|
||||||
|
# low res noise conditioning (similar to time above)
|
||||||
|
|
||||||
|
if exists(lowres_noise_level):
|
||||||
|
assert exists(self.to_lowres_noise_cond), 'lowres_noise_cond must be set to True on instantiation of the unet in order to conditiong on lowres noise'
|
||||||
|
lowres_noise_level = lowres_noise_level.type_as(x)
|
||||||
|
t = t + self.to_lowres_noise_cond(lowres_noise_level)
|
||||||
|
|
||||||
# conditional dropout
|
# conditional dropout
|
||||||
|
|
||||||
image_keep_mask = prob_mask_like((batch_size,), 1 - image_cond_drop_prob, device = device)
|
image_keep_mask = prob_mask_like((batch_size,), 1 - image_cond_drop_prob, device = device)
|
||||||
@@ -1964,25 +1991,48 @@ class LowresConditioner(nn.Module):
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
downsample_first = True,
|
downsample_first = True,
|
||||||
|
use_blur = True,
|
||||||
blur_prob = 0.5,
|
blur_prob = 0.5,
|
||||||
blur_sigma = 0.6,
|
blur_sigma = 0.6,
|
||||||
blur_kernel_size = 3,
|
blur_kernel_size = 3,
|
||||||
input_image_range = None
|
use_noise = False,
|
||||||
|
input_image_range = None,
|
||||||
|
normalize_img_fn = identity,
|
||||||
|
unnormalize_img_fn = identity
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.downsample_first = downsample_first
|
self.downsample_first = downsample_first
|
||||||
self.input_image_range = input_image_range
|
self.input_image_range = input_image_range
|
||||||
|
|
||||||
|
self.use_blur = use_blur
|
||||||
self.blur_prob = blur_prob
|
self.blur_prob = blur_prob
|
||||||
self.blur_sigma = blur_sigma
|
self.blur_sigma = blur_sigma
|
||||||
self.blur_kernel_size = blur_kernel_size
|
self.blur_kernel_size = blur_kernel_size
|
||||||
|
|
||||||
|
self.use_noise = use_noise
|
||||||
|
self.normalize_img = normalize_img_fn
|
||||||
|
self.unnormalize_img = unnormalize_img_fn
|
||||||
|
self.noise_scheduler = NoiseScheduler(beta_schedule = 'linear', timesteps = 1000, loss_type = 'l2') if use_noise else None
|
||||||
|
|
||||||
|
def noise_image(self, cond_fmap, noise_levels = None):
|
||||||
|
assert exists(self.noise_scheduler)
|
||||||
|
|
||||||
|
batch = cond_fmap.shape[0]
|
||||||
|
cond_fmap = self.normalize_img(cond_fmap)
|
||||||
|
|
||||||
|
random_noise_levels = default(noise_levels, lambda: self.noise_scheduler.sample_random_times(batch))
|
||||||
|
cond_fmap = self.noise_scheduler.q_sample(cond_fmap, t = random_noise_levels, noise = torch.randn_like(cond_fmap))
|
||||||
|
|
||||||
|
cond_fmap = self.unnormalize_img(cond_fmap)
|
||||||
|
return cond_fmap, random_noise_levels
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
cond_fmap,
|
cond_fmap,
|
||||||
*,
|
*,
|
||||||
target_image_size,
|
target_image_size,
|
||||||
downsample_image_size = None,
|
downsample_image_size = None,
|
||||||
|
should_blur = True,
|
||||||
blur_sigma = None,
|
blur_sigma = None,
|
||||||
blur_kernel_size = None
|
blur_kernel_size = None
|
||||||
):
|
):
|
||||||
@@ -1992,7 +2042,7 @@ class LowresConditioner(nn.Module):
|
|||||||
# blur is only applied 50% of the time
|
# blur is only applied 50% of the time
|
||||||
# section 3.1 in https://arxiv.org/abs/2106.15282
|
# section 3.1 in https://arxiv.org/abs/2106.15282
|
||||||
|
|
||||||
if random.random() < self.blur_prob:
|
if self.use_blur and should_blur and random.random() < self.blur_prob:
|
||||||
|
|
||||||
# when training, blur the low resolution conditional image
|
# when training, blur the low resolution conditional image
|
||||||
|
|
||||||
@@ -2014,8 +2064,21 @@ class LowresConditioner(nn.Module):
|
|||||||
|
|
||||||
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
|
cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2))
|
||||||
|
|
||||||
|
# resize to target image size
|
||||||
|
|
||||||
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range, nearest = True)
|
cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range, nearest = True)
|
||||||
return cond_fmap
|
|
||||||
|
# noise conditioning, as done in Imagen
|
||||||
|
# as a replacement for the BSR noising, and potentially replace blurring for first stage too
|
||||||
|
|
||||||
|
random_noise_levels = None
|
||||||
|
|
||||||
|
if self.use_noise:
|
||||||
|
cond_fmap, random_noise_levels = self.noise_image(cond_fmap)
|
||||||
|
|
||||||
|
# return conditioning feature map, as well as the augmentation noise levels
|
||||||
|
|
||||||
|
return cond_fmap, random_noise_levels
|
||||||
|
|
||||||
class Decoder(nn.Module):
|
class Decoder(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -2036,10 +2099,13 @@ class Decoder(nn.Module):
|
|||||||
predict_x_start_for_latent_diffusion = False,
|
predict_x_start_for_latent_diffusion = False,
|
||||||
image_sizes = None, # for cascading ddpm, image size at each stage
|
image_sizes = None, # for cascading ddpm, image size at each stage
|
||||||
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops)
|
||||||
|
use_noise_for_lowres_cond = False, # whether to use Imagen-like noising for low resolution conditioning
|
||||||
|
use_blur_for_lowres_cond = True, # whether to use the blur conditioning used in the original cascading ddpm paper, as well as DALL-E2
|
||||||
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur
|
||||||
blur_prob = 0.5, # cascading ddpm - when training, the gaussian blur is only applied 50% of the time
|
blur_prob = 0.5, # cascading ddpm - when training, the gaussian blur is only applied 50% of the time
|
||||||
blur_sigma = 0.6, # cascading ddpm - blur sigma
|
blur_sigma = 0.6, # cascading ddpm - blur sigma
|
||||||
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
blur_kernel_size = 3, # cascading ddpm - blur kernel size
|
||||||
|
lowres_noise_sample_level = 0.2, # in imagen paper, they use a 0.2 noise level at sample time for low resolution conditioning
|
||||||
clip_denoised = True,
|
clip_denoised = True,
|
||||||
clip_x_start = True,
|
clip_x_start = True,
|
||||||
clip_adapter_overrides = dict(),
|
clip_adapter_overrides = dict(),
|
||||||
@@ -2049,7 +2115,7 @@ class Decoder(nn.Module):
|
|||||||
unconditional = False, # set to True for generating images without conditioning
|
unconditional = False, # set to True for generating images without conditioning
|
||||||
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader
|
||||||
use_dynamic_thres = False, # from the Imagen paper
|
use_dynamic_thres = False, # from the Imagen paper
|
||||||
dynamic_thres_percentile = 0.9,
|
dynamic_thres_percentile = 0.95,
|
||||||
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
|
p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended
|
||||||
p2_loss_weight_k = 1,
|
p2_loss_weight_k = 1,
|
||||||
ddim_sampling_eta = 1. # can be set to 0. for deterministic sampling afaict
|
ddim_sampling_eta = 1. # can be set to 0. for deterministic sampling afaict
|
||||||
@@ -2087,10 +2153,17 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
self.channels = channels
|
self.channels = channels
|
||||||
|
|
||||||
|
|
||||||
|
# normalize and unnormalize image functions
|
||||||
|
|
||||||
|
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
||||||
|
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
||||||
|
|
||||||
# verify conditioning method
|
# verify conditioning method
|
||||||
|
|
||||||
unets = cast_tuple(unet)
|
unets = cast_tuple(unet)
|
||||||
num_unets = len(unets)
|
num_unets = len(unets)
|
||||||
|
self.num_unets = num_unets
|
||||||
|
|
||||||
self.unconditional = unconditional
|
self.unconditional = unconditional
|
||||||
|
|
||||||
@@ -2106,12 +2179,28 @@ class Decoder(nn.Module):
|
|||||||
self.learned_variance_constrain_frac = learned_variance_constrain_frac # whether to constrain the output of the network (the interpolation fraction) from 0 to 1
|
self.learned_variance_constrain_frac = learned_variance_constrain_frac # whether to constrain the output of the network (the interpolation fraction) from 0 to 1
|
||||||
self.vb_loss_weight = vb_loss_weight
|
self.vb_loss_weight = vb_loss_weight
|
||||||
|
|
||||||
|
# default and validate conditioning parameters
|
||||||
|
|
||||||
|
use_noise_for_lowres_cond = cast_tuple(use_noise_for_lowres_cond, num_unets - 1, validate = False)
|
||||||
|
use_blur_for_lowres_cond = cast_tuple(use_blur_for_lowres_cond, num_unets - 1, validate = False)
|
||||||
|
|
||||||
|
if len(use_noise_for_lowres_cond) < num_unets:
|
||||||
|
use_noise_for_lowres_cond = (False, *use_noise_for_lowres_cond)
|
||||||
|
|
||||||
|
if len(use_blur_for_lowres_cond) < num_unets:
|
||||||
|
use_blur_for_lowres_cond = (False, *use_blur_for_lowres_cond)
|
||||||
|
|
||||||
|
assert not use_noise_for_lowres_cond[0], 'first unet will never need low res noise conditioning'
|
||||||
|
assert not use_blur_for_lowres_cond[0], 'first unet will never need low res blur conditioning'
|
||||||
|
|
||||||
|
assert num_unets == 1 or all((use_noise or use_blur) for use_noise, use_blur in zip(use_noise_for_lowres_cond[1:], use_blur_for_lowres_cond[1:]))
|
||||||
|
|
||||||
# construct unets and vaes
|
# construct unets and vaes
|
||||||
|
|
||||||
self.unets = nn.ModuleList([])
|
self.unets = nn.ModuleList([])
|
||||||
self.vaes = nn.ModuleList([])
|
self.vaes = nn.ModuleList([])
|
||||||
|
|
||||||
for ind, (one_unet, one_vae, one_unet_learned_var) in enumerate(zip(unets, vaes, learned_variance)):
|
for ind, (one_unet, one_vae, one_unet_learned_var, lowres_noise_cond) in enumerate(zip(unets, vaes, learned_variance, use_noise_for_lowres_cond)):
|
||||||
assert isinstance(one_unet, Unet)
|
assert isinstance(one_unet, Unet)
|
||||||
assert isinstance(one_vae, (VQGanVAE, NullVQGanVAE))
|
assert isinstance(one_vae, (VQGanVAE, NullVQGanVAE))
|
||||||
|
|
||||||
@@ -2123,6 +2212,7 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
one_unet = one_unet.cast_model_parameters(
|
one_unet = one_unet.cast_model_parameters(
|
||||||
lowres_cond = not is_first,
|
lowres_cond = not is_first,
|
||||||
|
lowres_noise_cond = lowres_noise_cond,
|
||||||
cond_on_image_embeds = not unconditional and is_first,
|
cond_on_image_embeds = not unconditional and is_first,
|
||||||
cond_on_text_encodings = not unconditional and one_unet.cond_on_text_encodings,
|
cond_on_text_encodings = not unconditional and one_unet.cond_on_text_encodings,
|
||||||
channels = unet_channels,
|
channels = unet_channels,
|
||||||
@@ -2165,7 +2255,7 @@ class Decoder(nn.Module):
|
|||||||
image_sizes = default(image_sizes, (image_size,))
|
image_sizes = default(image_sizes, (image_size,))
|
||||||
image_sizes = tuple(sorted(set(image_sizes)))
|
image_sizes = tuple(sorted(set(image_sizes)))
|
||||||
|
|
||||||
assert len(self.unets) == len(image_sizes), f'you did not supply the correct number of u-nets ({len(self.unets)}) for resolutions {image_sizes}'
|
assert self.num_unets == len(image_sizes), f'you did not supply the correct number of u-nets ({self.num_unets}) for resolutions {image_sizes}'
|
||||||
self.image_sizes = image_sizes
|
self.image_sizes = image_sizes
|
||||||
self.sample_channels = cast_tuple(self.channels, len(image_sizes))
|
self.sample_channels = cast_tuple(self.channels, len(image_sizes))
|
||||||
|
|
||||||
@@ -2185,15 +2275,30 @@ class Decoder(nn.Module):
|
|||||||
# cascading ddpm related stuff
|
# cascading ddpm related stuff
|
||||||
|
|
||||||
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
|
lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets))
|
||||||
assert lowres_conditions == (False, *((True,) * (len(self.unets) - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
|
assert lowres_conditions == (False, *((True,) * (num_unets - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True'
|
||||||
|
|
||||||
self.to_lowres_cond = LowresConditioner(
|
self.lowres_conds = nn.ModuleList([])
|
||||||
downsample_first = lowres_downsample_first,
|
|
||||||
blur_prob = blur_prob,
|
for unet_index, use_noise, use_blur in zip(range(num_unets), use_noise_for_lowres_cond, use_blur_for_lowres_cond):
|
||||||
blur_sigma = blur_sigma,
|
if unet_index == 0:
|
||||||
blur_kernel_size = blur_kernel_size,
|
self.lowres_conds.append(None)
|
||||||
input_image_range = self.input_image_range
|
continue
|
||||||
)
|
|
||||||
|
lowres_cond = LowresConditioner(
|
||||||
|
downsample_first = lowres_downsample_first,
|
||||||
|
use_blur = use_blur,
|
||||||
|
use_noise = use_noise,
|
||||||
|
blur_prob = blur_prob,
|
||||||
|
blur_sigma = blur_sigma,
|
||||||
|
blur_kernel_size = blur_kernel_size,
|
||||||
|
input_image_range = self.input_image_range,
|
||||||
|
normalize_img_fn = self.normalize_img,
|
||||||
|
unnormalize_img_fn = self.unnormalize_img
|
||||||
|
)
|
||||||
|
|
||||||
|
self.lowres_conds.append(lowres_cond)
|
||||||
|
|
||||||
|
self.lowres_noise_sample_level = lowres_noise_sample_level
|
||||||
|
|
||||||
# classifier free guidance
|
# classifier free guidance
|
||||||
|
|
||||||
@@ -2211,11 +2316,6 @@ class Decoder(nn.Module):
|
|||||||
self.use_dynamic_thres = use_dynamic_thres
|
self.use_dynamic_thres = use_dynamic_thres
|
||||||
self.dynamic_thres_percentile = dynamic_thres_percentile
|
self.dynamic_thres_percentile = dynamic_thres_percentile
|
||||||
|
|
||||||
# normalize and unnormalize image functions
|
|
||||||
|
|
||||||
self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity
|
|
||||||
self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity
|
|
||||||
|
|
||||||
# device tracker
|
# device tracker
|
||||||
|
|
||||||
self.register_buffer('_dummy', torch.Tensor([True]), persistent = False)
|
self.register_buffer('_dummy', torch.Tensor([True]), persistent = False)
|
||||||
@@ -2229,7 +2329,7 @@ class Decoder(nn.Module):
|
|||||||
return any([unet.cond_on_text_encodings for unet in self.unets])
|
return any([unet.cond_on_text_encodings for unet in self.unets])
|
||||||
|
|
||||||
def get_unet(self, unet_number):
|
def get_unet(self, unet_number):
|
||||||
assert 0 < unet_number <= len(self.unets)
|
assert 0 < unet_number <= self.num_unets
|
||||||
index = unet_number - 1
|
index = unet_number - 1
|
||||||
return self.unets[index]
|
return self.unets[index]
|
||||||
|
|
||||||
@@ -2271,10 +2371,10 @@ class Decoder(nn.Module):
|
|||||||
x = x.clamp(-s, s) / s
|
x = x.clamp(-s, s) / s
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None):
|
def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, clip_denoised = True, predict_x_start = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None):
|
||||||
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)'
|
||||||
|
|
||||||
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img))
|
pred = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level))
|
||||||
|
|
||||||
if learned_variance:
|
if learned_variance:
|
||||||
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
|
pred, var_interp_frac_unnormalized = pred.chunk(2, dim = 1)
|
||||||
@@ -2306,44 +2406,97 @@ class Decoder(nn.Module):
|
|||||||
return model_mean, posterior_variance, posterior_log_variance
|
return model_mean, posterior_variance, posterior_log_variance
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True):
|
def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None):
|
||||||
b, *_, device = *x.shape, x.device
|
b, *_, device = *x.shape, x.device
|
||||||
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance)
|
model_mean, _, model_log_variance = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, clip_denoised = clip_denoised, predict_x_start = predict_x_start, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level)
|
||||||
noise = torch.randn_like(x)
|
noise = torch.randn_like(x)
|
||||||
# no noise when t == 0
|
# no noise when t == 0
|
||||||
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
||||||
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def p_sample_loop_ddpm(self, unet, shape, image_embed, noise_scheduler, predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, cond_scale = 1, is_latent_diffusion = False):
|
def p_sample_loop_ddpm(
|
||||||
|
self,
|
||||||
|
unet,
|
||||||
|
shape,
|
||||||
|
image_embed,
|
||||||
|
noise_scheduler,
|
||||||
|
predict_x_start = False,
|
||||||
|
learned_variance = False,
|
||||||
|
clip_denoised = True,
|
||||||
|
lowres_cond_img = None,
|
||||||
|
text_encodings = None,
|
||||||
|
cond_scale = 1,
|
||||||
|
is_latent_diffusion = False,
|
||||||
|
lowres_noise_level = None,
|
||||||
|
inpaint_image = None,
|
||||||
|
inpaint_mask = None
|
||||||
|
):
|
||||||
device = self.device
|
device = self.device
|
||||||
|
|
||||||
b = shape[0]
|
b = shape[0]
|
||||||
img = torch.randn(shape, device = device)
|
img = torch.randn(shape, device = device)
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
inpaint_image = self.normalize_img(inpaint_image)
|
||||||
|
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||||
|
inpaint_mask = resize_image_to(inpaint_mask, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = inpaint_mask.bool()
|
||||||
|
|
||||||
if not is_latent_diffusion:
|
if not is_latent_diffusion:
|
||||||
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img)
|
||||||
|
|
||||||
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
for i in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps):
|
||||||
|
times = torch.full((b,), i, device = device, dtype = torch.long)
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
# following the repaint paper
|
||||||
|
# https://arxiv.org/abs/2201.09865
|
||||||
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times)
|
||||||
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
img = self.p_sample(
|
img = self.p_sample(
|
||||||
unet,
|
unet,
|
||||||
img,
|
img,
|
||||||
torch.full((b,), i, device = device, dtype = torch.long),
|
times,
|
||||||
image_embed = image_embed,
|
image_embed = image_embed,
|
||||||
text_encodings = text_encodings,
|
text_encodings = text_encodings,
|
||||||
cond_scale = cond_scale,
|
cond_scale = cond_scale,
|
||||||
lowres_cond_img = lowres_cond_img,
|
lowres_cond_img = lowres_cond_img,
|
||||||
|
lowres_noise_level = lowres_noise_level,
|
||||||
predict_x_start = predict_x_start,
|
predict_x_start = predict_x_start,
|
||||||
noise_scheduler = noise_scheduler,
|
noise_scheduler = noise_scheduler,
|
||||||
learned_variance = learned_variance,
|
learned_variance = learned_variance,
|
||||||
clip_denoised = clip_denoised
|
clip_denoised = clip_denoised
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
unnormalize_img = self.unnormalize_img(img)
|
unnormalize_img = self.unnormalize_img(img)
|
||||||
return unnormalize_img
|
return unnormalize_img
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def p_sample_loop_ddim(self, unet, shape, image_embed, noise_scheduler, timesteps, eta = 1., predict_x_start = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, cond_scale = 1, is_latent_diffusion = False):
|
def p_sample_loop_ddim(
|
||||||
|
self,
|
||||||
|
unet,
|
||||||
|
shape,
|
||||||
|
image_embed,
|
||||||
|
noise_scheduler,
|
||||||
|
timesteps,
|
||||||
|
eta = 1.,
|
||||||
|
predict_x_start = False,
|
||||||
|
learned_variance = False,
|
||||||
|
clip_denoised = True,
|
||||||
|
lowres_cond_img = None,
|
||||||
|
text_encodings = None,
|
||||||
|
cond_scale = 1,
|
||||||
|
is_latent_diffusion = False,
|
||||||
|
lowres_noise_level = None,
|
||||||
|
inpaint_image = None,
|
||||||
|
inpaint_mask = None
|
||||||
|
):
|
||||||
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod_prev, self.ddim_sampling_eta
|
||||||
|
|
||||||
times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1]
|
times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1]
|
||||||
@@ -2351,6 +2504,13 @@ class Decoder(nn.Module):
|
|||||||
times = list(reversed(times.int().tolist()))
|
times = list(reversed(times.int().tolist()))
|
||||||
time_pairs = list(zip(times[:-1], times[1:]))
|
time_pairs = list(zip(times[:-1], times[1:]))
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
inpaint_image = self.normalize_img(inpaint_image)
|
||||||
|
inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float()
|
||||||
|
inpaint_mask = resize_image_to(inpaint_mask, shape[-1], nearest = True)
|
||||||
|
inpaint_mask = inpaint_mask.bool()
|
||||||
|
|
||||||
img = torch.randn(shape, device = device)
|
img = torch.randn(shape, device = device)
|
||||||
|
|
||||||
if not is_latent_diffusion:
|
if not is_latent_diffusion:
|
||||||
@@ -2362,7 +2522,13 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
time_cond = torch.full((batch,), time, device = device, dtype = torch.long)
|
||||||
|
|
||||||
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img)
|
if exists(inpaint_image):
|
||||||
|
# following the repaint paper
|
||||||
|
# https://arxiv.org/abs/2201.09865
|
||||||
|
noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond)
|
||||||
|
img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
|
pred = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level)
|
||||||
|
|
||||||
if learned_variance:
|
if learned_variance:
|
||||||
pred, _ = pred.chunk(2, dim = 1)
|
pred, _ = pred.chunk(2, dim = 1)
|
||||||
@@ -2385,6 +2551,9 @@ class Decoder(nn.Module):
|
|||||||
c1 * noise + \
|
c1 * noise + \
|
||||||
c2 * pred_noise
|
c2 * pred_noise
|
||||||
|
|
||||||
|
if exists(inpaint_image):
|
||||||
|
img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask)
|
||||||
|
|
||||||
img = self.unnormalize_img(img)
|
img = self.unnormalize_img(img)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
@@ -2401,7 +2570,7 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
return self.p_sample_loop_ddim(*args, noise_scheduler = noise_scheduler, timesteps = timesteps, **kwargs)
|
return self.p_sample_loop_ddim(*args, noise_scheduler = noise_scheduler, timesteps = timesteps, **kwargs)
|
||||||
|
|
||||||
def p_losses(self, unet, x_start, times, *, image_embed, noise_scheduler, lowres_cond_img = None, text_encodings = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False):
|
def p_losses(self, unet, x_start, times, *, image_embed, noise_scheduler, lowres_cond_img = None, text_encodings = None, predict_x_start = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False, lowres_noise_level = None):
|
||||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||||
|
|
||||||
# normalize to [-1, 1]
|
# normalize to [-1, 1]
|
||||||
@@ -2420,6 +2589,7 @@ class Decoder(nn.Module):
|
|||||||
image_embed = image_embed,
|
image_embed = image_embed,
|
||||||
text_encodings = text_encodings,
|
text_encodings = text_encodings,
|
||||||
lowres_cond_img = lowres_cond_img,
|
lowres_cond_img = lowres_cond_img,
|
||||||
|
lowres_noise_level = lowres_noise_level,
|
||||||
image_cond_drop_prob = self.image_cond_drop_prob,
|
image_cond_drop_prob = self.image_cond_drop_prob,
|
||||||
text_cond_drop_prob = self.text_cond_drop_prob,
|
text_cond_drop_prob = self.text_cond_drop_prob,
|
||||||
)
|
)
|
||||||
@@ -2483,6 +2653,8 @@ class Decoder(nn.Module):
|
|||||||
cond_scale = 1.,
|
cond_scale = 1.,
|
||||||
stop_at_unet_number = None,
|
stop_at_unet_number = None,
|
||||||
distributed = False,
|
distributed = False,
|
||||||
|
inpaint_image = None,
|
||||||
|
inpaint_mask = None
|
||||||
):
|
):
|
||||||
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally'
|
||||||
|
|
||||||
@@ -2496,29 +2668,41 @@ class Decoder(nn.Module):
|
|||||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||||
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
||||||
|
|
||||||
|
assert not (exists(inpaint_image) ^ exists(inpaint_mask)), 'inpaint_image and inpaint_mask (boolean mask of [batch, height, width]) must be both given for inpainting'
|
||||||
|
|
||||||
img = None
|
img = None
|
||||||
is_cuda = next(self.parameters()).is_cuda
|
is_cuda = next(self.parameters()).is_cuda
|
||||||
|
|
||||||
num_unets = len(self.unets)
|
num_unets = self.num_unets
|
||||||
cond_scale = cast_tuple(cond_scale, num_unets)
|
cond_scale = cast_tuple(cond_scale, num_unets)
|
||||||
|
|
||||||
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.sample_timesteps, cond_scale)):
|
for unet_number, unet, vae, channel, image_size, predict_x_start, learned_variance, noise_scheduler, lowres_cond, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.learned_variance, self.noise_schedulers, self.lowres_conds, self.sample_timesteps, cond_scale)):
|
||||||
|
|
||||||
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
context = self.one_unet_in_gpu(unet = unet) if is_cuda and not distributed else null_context()
|
||||||
|
|
||||||
with context:
|
with context:
|
||||||
lowres_cond_img = None
|
# prepare low resolution conditioning for upsamplers
|
||||||
|
|
||||||
|
lowres_cond_img = lowres_noise_level = None
|
||||||
shape = (batch_size, channel, image_size, image_size)
|
shape = (batch_size, channel, image_size, image_size)
|
||||||
|
|
||||||
if unet.lowres_cond:
|
if unet.lowres_cond:
|
||||||
lowres_cond_img = resize_image_to(img, target_image_size = image_size, clamp_range = self.input_image_range, nearest = True)
|
lowres_cond_img = resize_image_to(img, target_image_size = image_size, clamp_range = self.input_image_range, nearest = True)
|
||||||
|
|
||||||
|
if lowres_cond.use_noise:
|
||||||
|
lowres_noise_level = torch.full((batch_size,), int(self.lowres_noise_sample_level * 1000), dtype = torch.long, device = self.device)
|
||||||
|
lowres_cond_img, _ = lowres_cond.noise_image(lowres_cond_img, lowres_noise_level)
|
||||||
|
|
||||||
|
# latent diffusion
|
||||||
|
|
||||||
is_latent_diffusion = isinstance(vae, VQGanVAE)
|
is_latent_diffusion = isinstance(vae, VQGanVAE)
|
||||||
image_size = vae.get_encoded_fmap_size(image_size)
|
image_size = vae.get_encoded_fmap_size(image_size)
|
||||||
shape = (batch_size, vae.encoded_dim, image_size, image_size)
|
shape = (batch_size, vae.encoded_dim, image_size, image_size)
|
||||||
|
|
||||||
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
||||||
|
|
||||||
|
# denoising loop for image
|
||||||
|
|
||||||
img = self.p_sample_loop(
|
img = self.p_sample_loop(
|
||||||
unet,
|
unet,
|
||||||
shape,
|
shape,
|
||||||
@@ -2529,9 +2713,12 @@ class Decoder(nn.Module):
|
|||||||
learned_variance = learned_variance,
|
learned_variance = learned_variance,
|
||||||
clip_denoised = not is_latent_diffusion,
|
clip_denoised = not is_latent_diffusion,
|
||||||
lowres_cond_img = lowres_cond_img,
|
lowres_cond_img = lowres_cond_img,
|
||||||
|
lowres_noise_level = lowres_noise_level,
|
||||||
is_latent_diffusion = is_latent_diffusion,
|
is_latent_diffusion = is_latent_diffusion,
|
||||||
noise_scheduler = noise_scheduler,
|
noise_scheduler = noise_scheduler,
|
||||||
timesteps = sample_timesteps
|
timesteps = sample_timesteps,
|
||||||
|
inpaint_image = inpaint_image,
|
||||||
|
inpaint_mask = inpaint_mask
|
||||||
)
|
)
|
||||||
|
|
||||||
img = vae.decode(img)
|
img = vae.decode(img)
|
||||||
@@ -2550,7 +2737,7 @@ class Decoder(nn.Module):
|
|||||||
unet_number = None,
|
unet_number = None,
|
||||||
return_lowres_cond_image = False # whether to return the low resolution conditioning images, for debugging upsampler purposes
|
return_lowres_cond_image = False # whether to return the low resolution conditioning images, for debugging upsampler purposes
|
||||||
):
|
):
|
||||||
assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)'
|
assert not (self.num_unets > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {self.num_unets}, if you are training cascading DDPM (multiple unets)'
|
||||||
unet_number = default(unet_number, 1)
|
unet_number = default(unet_number, 1)
|
||||||
unet_index = unet_number - 1
|
unet_index = unet_number - 1
|
||||||
|
|
||||||
@@ -2558,6 +2745,7 @@ class Decoder(nn.Module):
|
|||||||
|
|
||||||
vae = self.vaes[unet_index]
|
vae = self.vaes[unet_index]
|
||||||
noise_scheduler = self.noise_schedulers[unet_index]
|
noise_scheduler = self.noise_schedulers[unet_index]
|
||||||
|
lowres_conditioner = self.lowres_conds[unet_index]
|
||||||
target_image_size = self.image_sizes[unet_index]
|
target_image_size = self.image_sizes[unet_index]
|
||||||
predict_x_start = self.predict_x_start[unet_index]
|
predict_x_start = self.predict_x_start[unet_index]
|
||||||
random_crop_size = self.random_crop_sizes[unet_index]
|
random_crop_size = self.random_crop_sizes[unet_index]
|
||||||
@@ -2580,7 +2768,7 @@ class Decoder(nn.Module):
|
|||||||
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified'
|
||||||
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented'
|
||||||
|
|
||||||
lowres_cond_img = self.to_lowres_cond(image, target_image_size = target_image_size, downsample_image_size = self.image_sizes[unet_index - 1]) if unet_number > 1 else None
|
lowres_cond_img, lowres_noise_level = lowres_conditioner(image, target_image_size = target_image_size, downsample_image_size = self.image_sizes[unet_index - 1]) if exists(lowres_conditioner) else (None, None)
|
||||||
image = resize_image_to(image, target_image_size, nearest = True)
|
image = resize_image_to(image, target_image_size, nearest = True)
|
||||||
|
|
||||||
if exists(random_crop_size):
|
if exists(random_crop_size):
|
||||||
@@ -2598,7 +2786,7 @@ class Decoder(nn.Module):
|
|||||||
image = vae.encode(image)
|
image = vae.encode(image)
|
||||||
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
lowres_cond_img = maybe(vae.encode)(lowres_cond_img)
|
||||||
|
|
||||||
losses = self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler)
|
losses = self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler, lowres_noise_level = lowres_noise_level)
|
||||||
|
|
||||||
if not return_lowres_cond_image:
|
if not return_lowres_cond_image:
|
||||||
return losses
|
return losses
|
||||||
|
|||||||
@@ -4,13 +4,15 @@ import json
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import shutil
|
import shutil
|
||||||
from itertools import zip_longest
|
from itertools import zip_longest
|
||||||
from typing import Optional, List, Union
|
from typing import Any, Optional, List, Union
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior
|
||||||
from dalle2_pytorch.utils import import_or_print_error
|
from dalle2_pytorch.utils import import_or_print_error
|
||||||
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer
|
||||||
|
from dalle2_pytorch.version import __version__
|
||||||
|
from packaging import version
|
||||||
|
|
||||||
# constants
|
# constants
|
||||||
|
|
||||||
@@ -21,16 +23,6 @@ DEFAULT_DATA_PATH = './.tracker-data'
|
|||||||
def exists(val):
|
def exists(val):
|
||||||
return val is not None
|
return val is not None
|
||||||
|
|
||||||
# load file functions
|
|
||||||
|
|
||||||
def load_wandb_file(run_path, file_path, **kwargs):
|
|
||||||
wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function')
|
|
||||||
file_reference = wandb.restore(file_path, run_path=run_path)
|
|
||||||
return file_reference.name
|
|
||||||
|
|
||||||
def load_local_file(file_path, **kwargs):
|
|
||||||
return file_path
|
|
||||||
|
|
||||||
class BaseLogger:
|
class BaseLogger:
|
||||||
"""
|
"""
|
||||||
An abstract class representing an object that can log data.
|
An abstract class representing an object that can log data.
|
||||||
@@ -234,7 +226,7 @@ class LocalLoader(BaseLoader):
|
|||||||
|
|
||||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||||
# Makes sure the file exists to be loaded
|
# Makes sure the file exists to be loaded
|
||||||
if not self.file_path.exists():
|
if not self.file_path.exists() and not self.only_auto_resume:
|
||||||
raise FileNotFoundError(f'Model not found at {self.file_path}')
|
raise FileNotFoundError(f'Model not found at {self.file_path}')
|
||||||
|
|
||||||
def recall(self) -> dict:
|
def recall(self) -> dict:
|
||||||
@@ -283,9 +275,9 @@ def create_loader(loader_type: str, data_path: str, **kwargs) -> BaseLoader:
|
|||||||
class BaseSaver:
|
class BaseSaver:
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
data_path: str,
|
data_path: str,
|
||||||
save_latest_to: Optional[Union[str, bool]] = 'latest.pth',
|
save_latest_to: Optional[Union[str, bool]] = None,
|
||||||
save_best_to: Optional[Union[str, bool]] = 'best.pth',
|
save_best_to: Optional[Union[str, bool]] = None,
|
||||||
save_meta_to: str = './',
|
save_meta_to: Optional[str] = None,
|
||||||
save_type: str = 'checkpoint',
|
save_type: str = 'checkpoint',
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
@@ -295,10 +287,10 @@ class BaseSaver:
|
|||||||
self.save_best_to = save_best_to
|
self.save_best_to = save_best_to
|
||||||
self.saving_best = save_best_to is not None and save_best_to is not False
|
self.saving_best = save_best_to is not None and save_best_to is not False
|
||||||
self.save_meta_to = save_meta_to
|
self.save_meta_to = save_meta_to
|
||||||
|
self.saving_meta = save_meta_to is not None
|
||||||
self.save_type = save_type
|
self.save_type = save_type
|
||||||
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
|
assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`'
|
||||||
assert self.save_meta_to is not None, '`save_meta_to` must be provided'
|
assert self.saving_latest or self.saving_best or self.saving_meta, 'At least one saving option must be specified'
|
||||||
assert self.saving_latest or self.saving_best, '`save_latest_to` or `save_best_to` must be provided'
|
|
||||||
|
|
||||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -459,6 +451,11 @@ class Tracker:
|
|||||||
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
||||||
print(f"New logger config: {self.logger.__dict__}")
|
print(f"New logger config: {self.logger.__dict__}")
|
||||||
|
|
||||||
|
self.save_metadata = dict(
|
||||||
|
version = version.parse(__version__)
|
||||||
|
) # Data that will be saved alongside the checkpoint or model
|
||||||
|
self.blacklisted_checkpoint_metadata_keys = ['scaler', 'optimizer', 'model', 'version', 'step', 'steps'] # These keys would cause us to error if we try to save them as metadata
|
||||||
|
|
||||||
assert self.logger is not None, '`logger` must be set before `init` is called'
|
assert self.logger is not None, '`logger` must be set before `init` is called'
|
||||||
if self.dummy_mode:
|
if self.dummy_mode:
|
||||||
# The only thing we need is a loader
|
# The only thing we need is a loader
|
||||||
@@ -507,8 +504,15 @@ class Tracker:
|
|||||||
# Save the config under config_name in the root folder of data_path
|
# Save the config under config_name in the root folder of data_path
|
||||||
shutil.copy(current_config_path, self.data_path / config_name)
|
shutil.copy(current_config_path, self.data_path / config_name)
|
||||||
for saver in self.savers:
|
for saver in self.savers:
|
||||||
remote_path = Path(saver.save_meta_to) / config_name
|
if saver.saving_meta:
|
||||||
saver.save_file(current_config_path, str(remote_path))
|
remote_path = Path(saver.save_meta_to) / config_name
|
||||||
|
saver.save_file(current_config_path, str(remote_path))
|
||||||
|
|
||||||
|
def add_save_metadata(self, state_dict_key: str, metadata: Any):
|
||||||
|
"""
|
||||||
|
Adds a new piece of metadata that will be saved along with the model or decoder.
|
||||||
|
"""
|
||||||
|
self.save_metadata[state_dict_key] = metadata
|
||||||
|
|
||||||
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
|
def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path:
|
||||||
"""
|
"""
|
||||||
@@ -518,24 +522,34 @@ class Tracker:
|
|||||||
"""
|
"""
|
||||||
assert save_type in ['checkpoint', 'model']
|
assert save_type in ['checkpoint', 'model']
|
||||||
if save_type == 'checkpoint':
|
if save_type == 'checkpoint':
|
||||||
trainer.save(file_path, overwrite=True, **kwargs)
|
# Create a metadata dict without the blacklisted keys so we do not error when we create the state dict
|
||||||
|
metadata = {k: v for k, v in self.save_metadata.items() if k not in self.blacklisted_checkpoint_metadata_keys}
|
||||||
|
trainer.save(file_path, overwrite=True, **kwargs, **metadata)
|
||||||
elif save_type == 'model':
|
elif save_type == 'model':
|
||||||
if isinstance(trainer, DiffusionPriorTrainer):
|
if isinstance(trainer, DiffusionPriorTrainer):
|
||||||
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior
|
||||||
state_dict = trainer.unwrap_model(prior).state_dict()
|
prior: DiffusionPrior = trainer.unwrap_model(prior)
|
||||||
torch.save(state_dict, file_path)
|
# Remove CLIP if it is part of the model
|
||||||
|
prior.clip = None
|
||||||
|
model_state_dict = prior.state_dict()
|
||||||
elif isinstance(trainer, DecoderTrainer):
|
elif isinstance(trainer, DecoderTrainer):
|
||||||
decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder)
|
||||||
|
# Remove CLIP if it is part of the model
|
||||||
|
decoder.clip = None
|
||||||
if trainer.use_ema:
|
if trainer.use_ema:
|
||||||
trainable_unets = decoder.unets
|
trainable_unets = decoder.unets
|
||||||
decoder.unets = trainer.unets # Swap EMA unets in
|
decoder.unets = trainer.unets # Swap EMA unets in
|
||||||
state_dict = decoder.state_dict()
|
model_state_dict = decoder.state_dict()
|
||||||
decoder.unets = trainable_unets # Swap back
|
decoder.unets = trainable_unets # Swap back
|
||||||
else:
|
else:
|
||||||
state_dict = decoder.state_dict()
|
model_state_dict = decoder.state_dict()
|
||||||
torch.save(state_dict, file_path)
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?')
|
||||||
|
state_dict = {
|
||||||
|
**self.save_metadata,
|
||||||
|
'model': model_state_dict
|
||||||
|
}
|
||||||
|
torch.save(state_dict, file_path)
|
||||||
return Path(file_path)
|
return Path(file_path)
|
||||||
|
|
||||||
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
|
def save(self, trainer, is_best: bool, is_latest: bool, **kwargs):
|
||||||
|
|||||||
@@ -225,6 +225,7 @@ class UnetConfig(BaseModel):
|
|||||||
self_attn: ListOrTuple(int)
|
self_attn: ListOrTuple(int)
|
||||||
attn_dim_head: int = 32
|
attn_dim_head: int = 32
|
||||||
attn_heads: int = 16
|
attn_heads: int = 16
|
||||||
|
init_cross_embed: bool = True
|
||||||
|
|
||||||
class Config:
|
class Config:
|
||||||
extra = "allow"
|
extra = "allow"
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.24.2'
|
__version__ = '0.26.2'
|
||||||
|
|||||||
@@ -513,6 +513,7 @@ def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_
|
|||||||
}
|
}
|
||||||
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy)
|
||||||
tracker.save_config(config_path, config_name='decoder_config.json')
|
tracker.save_config(config_path, config_name='decoder_config.json')
|
||||||
|
tracker.add_save_metadata(state_dict_key='config', metadata=config.dict())
|
||||||
return tracker
|
return tracker
|
||||||
|
|
||||||
def initialize_training(config: TrainDecoderConfig, config_path):
|
def initialize_training(config: TrainDecoderConfig, config_path):
|
||||||
|
|||||||
Reference in New Issue
Block a user