mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-22 17:44:22 +01:00
Compare commits
6 Commits
v0.17.0
...
fix_resizi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3a1dea7d97 | ||
|
|
097afda606 | ||
|
|
5c520db825 | ||
|
|
3070610231 | ||
|
|
870aeeca62 | ||
|
|
f28dc6dc01 |
33
.github/workflows/ci.yml
vendored
Normal file
33
.github/workflows/ci.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: Continuous integration
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
pull_request:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
tests:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
- name: Install
|
||||||
|
run: |
|
||||||
|
python3 -m venv .env
|
||||||
|
source .env/bin/activate
|
||||||
|
make install
|
||||||
|
- name: Tests
|
||||||
|
run: |
|
||||||
|
source .env/bin/activate
|
||||||
|
make test
|
||||||
|
|
||||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -136,3 +136,5 @@ dmypy.json
|
|||||||
|
|
||||||
# Pyre type checker
|
# Pyre type checker
|
||||||
.pyre/
|
.pyre/
|
||||||
|
.tracker_data
|
||||||
|
*.pth
|
||||||
|
|||||||
6
Makefile
Normal file
6
Makefile
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
install:
|
||||||
|
pip install -U pip
|
||||||
|
pip install -e .
|
||||||
|
|
||||||
|
test:
|
||||||
|
CUDA_VISIBLE_DEVICES= python train_decoder.py --config_file configs/train_decoder_config.test.json
|
||||||
102
configs/train_decoder_config.test.json
Normal file
102
configs/train_decoder_config.test.json
Normal file
@@ -0,0 +1,102 @@
|
|||||||
|
{
|
||||||
|
"decoder": {
|
||||||
|
"unets": [
|
||||||
|
{
|
||||||
|
"dim": 16,
|
||||||
|
"image_embed_dim": 768,
|
||||||
|
"cond_dim": 16,
|
||||||
|
"channels": 3,
|
||||||
|
"dim_mults": [1, 2, 4, 8],
|
||||||
|
"attn_dim_head": 16,
|
||||||
|
"attn_heads": 4,
|
||||||
|
"self_attn": [false, true, true, true]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"clip": {
|
||||||
|
"make": "openai",
|
||||||
|
"model": "ViT-L/14"
|
||||||
|
},
|
||||||
|
|
||||||
|
"timesteps": 10,
|
||||||
|
"image_sizes": [64],
|
||||||
|
"channels": 3,
|
||||||
|
"loss_type": "l2",
|
||||||
|
"beta_schedule": ["cosine"],
|
||||||
|
"learned_variance": true
|
||||||
|
},
|
||||||
|
"data": {
|
||||||
|
"webdataset_base_url": "test_data/{}.tar",
|
||||||
|
"num_workers": 4,
|
||||||
|
"batch_size": 4,
|
||||||
|
"start_shard": 0,
|
||||||
|
"end_shard": 9,
|
||||||
|
"shard_width": 1,
|
||||||
|
"index_width": 1,
|
||||||
|
"splits": {
|
||||||
|
"train": 0.75,
|
||||||
|
"val": 0.15,
|
||||||
|
"test": 0.1
|
||||||
|
},
|
||||||
|
"shuffle_train": false,
|
||||||
|
"resample_train": true,
|
||||||
|
"preprocessing": {
|
||||||
|
"RandomResizedCrop": {
|
||||||
|
"size": [224, 224],
|
||||||
|
"scale": [0.75, 1.0],
|
||||||
|
"ratio": [1.0, 1.0]
|
||||||
|
},
|
||||||
|
"ToTensor": true
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"train": {
|
||||||
|
"epochs": 1,
|
||||||
|
"lr": 1e-16,
|
||||||
|
"wd": 0.01,
|
||||||
|
"max_grad_norm": 0.5,
|
||||||
|
"save_every_n_samples": 100,
|
||||||
|
"n_sample_images": 1,
|
||||||
|
"device": "cpu",
|
||||||
|
"epoch_samples": 50,
|
||||||
|
"validation_samples": 5,
|
||||||
|
"use_ema": true,
|
||||||
|
"ema_beta": 0.99,
|
||||||
|
"amp": false,
|
||||||
|
"save_all": false,
|
||||||
|
"save_latest": true,
|
||||||
|
"save_best": true,
|
||||||
|
"unet_training_mask": [true]
|
||||||
|
},
|
||||||
|
"evaluate": {
|
||||||
|
"n_evaluation_samples": 2,
|
||||||
|
"FID": {
|
||||||
|
"feature": 64
|
||||||
|
},
|
||||||
|
"IS": {
|
||||||
|
"feature": 64,
|
||||||
|
"splits": 10
|
||||||
|
},
|
||||||
|
"KID": {
|
||||||
|
"feature": 64,
|
||||||
|
"subset_size": 2
|
||||||
|
},
|
||||||
|
"LPIPS": {
|
||||||
|
"net_type": "vgg",
|
||||||
|
"reduction": "mean"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"tracker": {
|
||||||
|
"overwrite_data_path": true,
|
||||||
|
|
||||||
|
"log": {
|
||||||
|
"log_type": "console"
|
||||||
|
},
|
||||||
|
|
||||||
|
"load": {
|
||||||
|
"load_from": null
|
||||||
|
},
|
||||||
|
|
||||||
|
"save": [{
|
||||||
|
"save_to": "local"
|
||||||
|
}]
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -169,6 +169,11 @@ class BaseClipAdapter(nn.Module):
|
|||||||
self.clip = clip
|
self.clip = clip
|
||||||
self.overrides = kwargs
|
self.overrides = kwargs
|
||||||
|
|
||||||
|
def validate_and_resize_image(self, image):
|
||||||
|
image_size = image.shape[-1]
|
||||||
|
assert image_size >= self.image_size, f'you are passing in an image of size {image_size} but CLIP requires the image size to be at least {self.image_size}'
|
||||||
|
return resize_image_to(image, self.image_size)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def dim_latent(self):
|
def dim_latent(self):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -219,7 +224,7 @@ class XClipAdapter(BaseClipAdapter):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def embed_image(self, image):
|
def embed_image(self, image):
|
||||||
image = resize_image_to(image, self.image_size)
|
image = self.validate_and_resize_image(image)
|
||||||
encoder_output = self.clip.visual_transformer(image)
|
encoder_output = self.clip.visual_transformer(image)
|
||||||
image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:]
|
image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:]
|
||||||
image_embed = self.clip.to_visual_latent(image_cls)
|
image_embed = self.clip.to_visual_latent(image_cls)
|
||||||
@@ -254,7 +259,7 @@ class CoCaAdapter(BaseClipAdapter):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def embed_image(self, image):
|
def embed_image(self, image):
|
||||||
image = resize_image_to(image, self.image_size)
|
image = self.validate_and_resize_image(image)
|
||||||
image_embed, image_encodings = self.clip.embed_image(image)
|
image_embed, image_encodings = self.clip.embed_image(image)
|
||||||
return EmbeddedImage(image_embed, image_encodings)
|
return EmbeddedImage(image_embed, image_encodings)
|
||||||
|
|
||||||
@@ -315,7 +320,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def embed_image(self, image):
|
def embed_image(self, image):
|
||||||
assert not self.cleared
|
assert not self.cleared
|
||||||
image = resize_image_to(image, self.image_size)
|
image = self.validate_and_resize_image(image)
|
||||||
image = self.clip_normalize(image)
|
image = self.clip_normalize(image)
|
||||||
image_embed = self.clip.encode_image(image)
|
image_embed = self.clip.encode_image(image)
|
||||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import webdataset as wds
|
import webdataset as wds
|
||||||
import torch
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import fsspec
|
import fsspec
|
||||||
import shutil
|
import shutil
|
||||||
@@ -255,7 +256,7 @@ def create_image_embedding_dataloader(
|
|||||||
)
|
)
|
||||||
if shuffle_num is not None and shuffle_num > 0:
|
if shuffle_num is not None and shuffle_num > 0:
|
||||||
ds.shuffle(1000)
|
ds.shuffle(1000)
|
||||||
return wds.WebLoader(
|
return DataLoader(
|
||||||
ds,
|
ds,
|
||||||
num_workers=num_workers,
|
num_workers=num_workers,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
|
|||||||
@@ -21,7 +21,7 @@ import pytorch_warmup as warmup
|
|||||||
|
|
||||||
from ema_pytorch import EMA
|
from ema_pytorch import EMA
|
||||||
|
|
||||||
from accelerate import Accelerator
|
from accelerate import Accelerator, DistributedType
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@@ -76,6 +76,7 @@ def cast_torch_tensor(fn):
|
|||||||
def inner(model, *args, **kwargs):
|
def inner(model, *args, **kwargs):
|
||||||
device = kwargs.pop('_device', next(model.parameters()).device)
|
device = kwargs.pop('_device', next(model.parameters()).device)
|
||||||
cast_device = kwargs.pop('_cast_device', True)
|
cast_device = kwargs.pop('_cast_device', True)
|
||||||
|
cast_deepspeed_precision = kwargs.pop('_cast_deepspeed_precision', True)
|
||||||
|
|
||||||
kwargs_keys = kwargs.keys()
|
kwargs_keys = kwargs.keys()
|
||||||
all_args = (*args, *kwargs.values())
|
all_args = (*args, *kwargs.values())
|
||||||
@@ -85,6 +86,21 @@ def cast_torch_tensor(fn):
|
|||||||
if cast_device:
|
if cast_device:
|
||||||
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
||||||
|
|
||||||
|
if cast_deepspeed_precision:
|
||||||
|
try:
|
||||||
|
accelerator = model.accelerator
|
||||||
|
if accelerator is not None and accelerator.distributed_type == DistributedType.DEEPSPEED:
|
||||||
|
cast_type_map = {
|
||||||
|
"fp16": torch.half,
|
||||||
|
"bf16": torch.bfloat16,
|
||||||
|
"no": torch.float
|
||||||
|
}
|
||||||
|
precision_type = cast_type_map[accelerator.mixed_precision]
|
||||||
|
all_args = tuple(map(lambda t: t.to(precision_type) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
||||||
|
except AttributeError:
|
||||||
|
# Then this model doesn't have an accelerator
|
||||||
|
pass
|
||||||
|
|
||||||
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
|
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
|
||||||
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
|
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
|
||||||
|
|
||||||
@@ -446,6 +462,7 @@ class DecoderTrainer(nn.Module):
|
|||||||
self,
|
self,
|
||||||
decoder,
|
decoder,
|
||||||
accelerator = None,
|
accelerator = None,
|
||||||
|
dataloaders = None,
|
||||||
use_ema = True,
|
use_ema = True,
|
||||||
lr = 1e-4,
|
lr = 1e-4,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
@@ -508,8 +525,21 @@ class DecoderTrainer(nn.Module):
|
|||||||
|
|
||||||
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
|
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
|
||||||
|
|
||||||
decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers))
|
if self.accelerator.distributed_type == DistributedType.DEEPSPEED and decoder.clip is not None:
|
||||||
|
# Then we need to make sure clip is using the correct precision or else deepspeed will error
|
||||||
|
cast_type_map = {
|
||||||
|
"fp16": torch.half,
|
||||||
|
"bf16": torch.bfloat16,
|
||||||
|
"no": torch.float
|
||||||
|
}
|
||||||
|
precision_type = cast_type_map[accelerator.mixed_precision]
|
||||||
|
assert precision_type == torch.float, "DeepSpeed currently only supports float32 precision when using on the fly embedding generation from clip"
|
||||||
|
clip = decoder.clip
|
||||||
|
clip.to(precision_type)
|
||||||
|
decoder, train_loader, val_loader, *optimizers = list(self.accelerator.prepare(decoder, dataloaders["train"], dataloaders["val"], *optimizers))
|
||||||
|
|
||||||
|
self.train_loader = train_loader
|
||||||
|
self.val_loader = val_loader
|
||||||
self.decoder = decoder
|
self.decoder = decoder
|
||||||
|
|
||||||
# store optimizers
|
# store optimizers
|
||||||
@@ -675,6 +705,9 @@ class DecoderTrainer(nn.Module):
|
|||||||
|
|
||||||
total_loss = 0.
|
total_loss = 0.
|
||||||
|
|
||||||
|
|
||||||
|
using_amp = self.accelerator.mixed_precision != 'no'
|
||||||
|
|
||||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
||||||
with self.accelerator.autocast():
|
with self.accelerator.autocast():
|
||||||
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.17.0'
|
__version__ = '0.18.0'
|
||||||
|
|||||||
BIN
test_data/0.tar
Normal file
BIN
test_data/0.tar
Normal file
Binary file not shown.
BIN
test_data/1.tar
Normal file
BIN
test_data/1.tar
Normal file
Binary file not shown.
BIN
test_data/2.tar
Normal file
BIN
test_data/2.tar
Normal file
Binary file not shown.
BIN
test_data/3.tar
Normal file
BIN
test_data/3.tar
Normal file
Binary file not shown.
BIN
test_data/4.tar
Normal file
BIN
test_data/4.tar
Normal file
Binary file not shown.
BIN
test_data/5.tar
Normal file
BIN
test_data/5.tar
Normal file
Binary file not shown.
BIN
test_data/6.tar
Normal file
BIN
test_data/6.tar
Normal file
Binary file not shown.
BIN
test_data/7.tar
Normal file
BIN
test_data/7.tar
Normal file
Binary file not shown.
BIN
test_data/8.tar
Normal file
BIN
test_data/8.tar
Normal file
Binary file not shown.
BIN
test_data/9.tar
Normal file
BIN
test_data/9.tar
Normal file
Binary file not shown.
@@ -132,7 +132,7 @@ def get_example_data(dataloader, device, n=5):
|
|||||||
break
|
break
|
||||||
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
|
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
|
||||||
|
|
||||||
def generate_samples(trainer, example_data, condition_on_text_encodings=False, text_prepend=""):
|
def generate_samples(trainer, example_data, condition_on_text_encodings=False, text_prepend="", match_image_size=True):
|
||||||
"""
|
"""
|
||||||
Takes example data and generates images from the embeddings
|
Takes example data and generates images from the embeddings
|
||||||
Returns three lists: real images, generated images, and captions
|
Returns three lists: real images, generated images, and captions
|
||||||
@@ -160,6 +160,9 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
|
|||||||
samples = trainer.sample(**sample_params)
|
samples = trainer.sample(**sample_params)
|
||||||
generated_images = list(samples)
|
generated_images = list(samples)
|
||||||
captions = [text_prepend + txt for txt in txts]
|
captions = [text_prepend + txt for txt in txts]
|
||||||
|
if match_image_size:
|
||||||
|
generated_image_size = generated_images[0].shape[-1]
|
||||||
|
real_images = [resize_image_to(image, generated_image_size, clamp_range=(0, 1)) for image in real_images]
|
||||||
return real_images, generated_images, captions
|
return real_images, generated_images, captions
|
||||||
|
|
||||||
def generate_grid_samples(trainer, examples, condition_on_text_encodings=False, text_prepend=""):
|
def generate_grid_samples(trainer, examples, condition_on_text_encodings=False, text_prepend=""):
|
||||||
@@ -167,14 +170,6 @@ def generate_grid_samples(trainer, examples, condition_on_text_encodings=False,
|
|||||||
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
|
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
|
||||||
"""
|
"""
|
||||||
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings, text_prepend)
|
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings, text_prepend)
|
||||||
|
|
||||||
real_image_size = real_images[0].shape[-1]
|
|
||||||
generated_image_size = generated_images[0].shape[-1]
|
|
||||||
|
|
||||||
# training images may be larger than the generated one
|
|
||||||
if real_image_size > generated_image_size:
|
|
||||||
real_images = [resize_image_to(image, generated_image_size) for image in real_images]
|
|
||||||
|
|
||||||
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
||||||
return grid_images, captions
|
return grid_images, captions
|
||||||
|
|
||||||
@@ -279,6 +274,7 @@ def train(
|
|||||||
trainer = DecoderTrainer(
|
trainer = DecoderTrainer(
|
||||||
decoder=decoder,
|
decoder=decoder,
|
||||||
accelerator=accelerator,
|
accelerator=accelerator,
|
||||||
|
dataloaders=dataloaders,
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -289,7 +285,6 @@ def train(
|
|||||||
sample = 0
|
sample = 0
|
||||||
samples_seen = 0
|
samples_seen = 0
|
||||||
val_sample = 0
|
val_sample = 0
|
||||||
step = lambda: int(trainer.num_steps_taken(unet_number=1))
|
|
||||||
|
|
||||||
if tracker.can_recall:
|
if tracker.can_recall:
|
||||||
start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer)
|
start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer)
|
||||||
@@ -304,6 +299,8 @@ def train(
|
|||||||
if not exists(unet_training_mask):
|
if not exists(unet_training_mask):
|
||||||
# Then the unet mask should be true for all unets in the decoder
|
# Then the unet mask should be true for all unets in the decoder
|
||||||
unet_training_mask = [True] * trainer.num_unets
|
unet_training_mask = [True] * trainer.num_unets
|
||||||
|
first_training_unet = min(index for index, mask in enumerate(unet_training_mask) if mask)
|
||||||
|
step = lambda: int(trainer.num_steps_taken(unet_number=first_training_unet+1))
|
||||||
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||||
|
|
||||||
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
|
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
|
||||||
@@ -326,7 +323,7 @@ def train(
|
|||||||
last_snapshot = sample
|
last_snapshot = sample
|
||||||
|
|
||||||
if next_task == 'train':
|
if next_task == 'train':
|
||||||
for i, (img, emb, txt) in enumerate(dataloaders["train"]):
|
for i, (img, emb, txt) in enumerate(trainer.train_loader):
|
||||||
# We want to count the total number of samples across all processes
|
# We want to count the total number of samples across all processes
|
||||||
sample_length_tensor[0] = len(img)
|
sample_length_tensor[0] = len(img)
|
||||||
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
|
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
|
||||||
@@ -419,7 +416,7 @@ def train(
|
|||||||
timer = Timer()
|
timer = Timer()
|
||||||
accelerator.wait_for_everyone()
|
accelerator.wait_for_everyone()
|
||||||
i = 0
|
i = 0
|
||||||
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
|
for i, (img, emb, txt) in enumerate(trainer.val_loader): # Use the accelerate prepared loader
|
||||||
val_sample_length_tensor[0] = len(img)
|
val_sample_length_tensor[0] = len(img)
|
||||||
all_samples = accelerator.gather(val_sample_length_tensor)
|
all_samples = accelerator.gather(val_sample_length_tensor)
|
||||||
total_samples = all_samples.sum().item()
|
total_samples = all_samples.sum().item()
|
||||||
@@ -525,6 +522,20 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
|||||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
|
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
|
||||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||||
|
|
||||||
|
if accelerator.num_processes > 1:
|
||||||
|
# We are using distributed training and want to immediately ensure all can connect
|
||||||
|
accelerator.print("Waiting for all processes to connect...")
|
||||||
|
accelerator.wait_for_everyone()
|
||||||
|
accelerator.print("All processes online and connected")
|
||||||
|
|
||||||
|
# If we are in deepspeed fp16 mode, we must ensure learned variance is off
|
||||||
|
if accelerator.mixed_precision == "fp16" and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED and config.decoder.learned_variance:
|
||||||
|
raise ValueError("DeepSpeed fp16 mode does not support learned variance")
|
||||||
|
|
||||||
|
if accelerator.process_index != accelerator.local_process_index and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED:
|
||||||
|
# This is an invalid configuration until we figure out how to handle this
|
||||||
|
raise ValueError("DeepSpeed does not support multi-node distributed training")
|
||||||
|
|
||||||
# Set up data
|
# Set up data
|
||||||
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
|
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
|
||||||
world_size = accelerator.num_processes
|
world_size = accelerator.num_processes
|
||||||
|
|||||||
Reference in New Issue
Block a user