mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-22 09:34:27 +01:00
Compare commits
8 Commits
v0.16.19
...
fix_resizi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3a1dea7d97 | ||
|
|
097afda606 | ||
|
|
5c520db825 | ||
|
|
3070610231 | ||
|
|
870aeeca62 | ||
|
|
f28dc6dc01 | ||
|
|
081d8d3484 | ||
|
|
a71f693a26 |
33
.github/workflows/ci.yml
vendored
Normal file
33
.github/workflows/ci.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: Continuous integration
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
pull_request:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
tests:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
python-version: [3.8]
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
- name: Install
|
||||||
|
run: |
|
||||||
|
python3 -m venv .env
|
||||||
|
source .env/bin/activate
|
||||||
|
make install
|
||||||
|
- name: Tests
|
||||||
|
run: |
|
||||||
|
source .env/bin/activate
|
||||||
|
make test
|
||||||
|
|
||||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -136,3 +136,5 @@ dmypy.json
|
|||||||
|
|
||||||
# Pyre type checker
|
# Pyre type checker
|
||||||
.pyre/
|
.pyre/
|
||||||
|
.tracker_data
|
||||||
|
*.pth
|
||||||
|
|||||||
6
Makefile
Normal file
6
Makefile
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
install:
|
||||||
|
pip install -U pip
|
||||||
|
pip install -e .
|
||||||
|
|
||||||
|
test:
|
||||||
|
CUDA_VISIBLE_DEVICES= python train_decoder.py --config_file configs/train_decoder_config.test.json
|
||||||
@@ -30,6 +30,7 @@ Defines the configuration options for the decoder model. The unets defined above
|
|||||||
| `loss_type` | No | `l2` | The loss function. Options are `l1`, `huber`, or `l2`. |
|
| `loss_type` | No | `l2` | The loss function. Options are `l1`, `huber`, or `l2`. |
|
||||||
| `beta_schedule` | No | `cosine` | The noising schedule. Options are `cosine`, `linear`, `quadratic`, `jsd`, or `sigmoid`. |
|
| `beta_schedule` | No | `cosine` | The noising schedule. Options are `cosine`, `linear`, `quadratic`, `jsd`, or `sigmoid`. |
|
||||||
| `learned_variance` | No | `True` | Whether to learn the variance. |
|
| `learned_variance` | No | `True` | Whether to learn the variance. |
|
||||||
|
| `clip` | No | `None` | The clip model to use if embeddings are being generated on the fly. Takes keys `make` and `model` with defaults `openai` and `ViT-L/14`. |
|
||||||
|
|
||||||
Any parameter from the `Decoder` constructor can also be given here.
|
Any parameter from the `Decoder` constructor can also be given here.
|
||||||
|
|
||||||
@@ -39,7 +40,8 @@ Settings for creation of the dataloaders.
|
|||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
| `webdataset_base_url` | Yes | N/A | The url of a shard in the webdataset with the shard replaced with `{}`[^1]. |
|
| `webdataset_base_url` | Yes | N/A | The url of a shard in the webdataset with the shard replaced with `{}`[^1]. |
|
||||||
| `embeddings_url` | No | N/A | The url of the folder containing embeddings shards. Not required if embeddings are in webdataset. |
|
| `img_embeddings_url` | No | `None` | The url of the folder containing image embeddings shards. Not required if embeddings are in webdataset or clip is being used. |
|
||||||
|
| `text_embeddings_url` | No | `None` | The url of the folder containing text embeddings shards. Not required if embeddings are in webdataset or clip is being used. |
|
||||||
| `num_workers` | No | `4` | The number of workers used in the dataloader. |
|
| `num_workers` | No | `4` | The number of workers used in the dataloader. |
|
||||||
| `batch_size` | No | `64` | The batch size. |
|
| `batch_size` | No | `64` | The batch size. |
|
||||||
| `start_shard` | No | `0` | Defines the start of the shard range the dataset will recall. |
|
| `start_shard` | No | `0` | Defines the start of the shard range the dataset will recall. |
|
||||||
@@ -106,6 +108,13 @@ Tracking is split up into three sections:
|
|||||||
|
|
||||||
**Logging:**
|
**Logging:**
|
||||||
|
|
||||||
|
All loggers have the following keys:
|
||||||
|
| Option | Required | Default | Description |
|
||||||
|
| ------ | -------- | ------- | ----------- |
|
||||||
|
| `log_type` | Yes | N/A | The type of logger class to use. |
|
||||||
|
| `resume` | No | `False` | For loggers that have the option to resume an old run, resume it using maually input parameters. |
|
||||||
|
| `auto_resume` | No | `False` | If true, the logger will attempt to resume an old run using parameters from that previous run. |
|
||||||
|
|
||||||
If using `console` there is no further configuration than setting `log_type` to `console`.
|
If using `console` there is no further configuration than setting `log_type` to `console`.
|
||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
@@ -119,10 +128,15 @@ If using `wandb`
|
|||||||
| `wandb_project` | Yes | N/A | The wandb project save the run to. |
|
| `wandb_project` | Yes | N/A | The wandb project save the run to. |
|
||||||
| `wandb_run_name` | No | `None` | The wandb run name. |
|
| `wandb_run_name` | No | `None` | The wandb run name. |
|
||||||
| `wandb_run_id` | No | `None` | The wandb run id. Used if resuming an old run. |
|
| `wandb_run_id` | No | `None` | The wandb run id. Used if resuming an old run. |
|
||||||
| `wandb_resume` | No | `False` | Whether to resume an old run. |
|
|
||||||
|
|
||||||
**Loading:**
|
**Loading:**
|
||||||
|
|
||||||
|
All loaders have the following keys:
|
||||||
|
| Option | Required | Default | Description |
|
||||||
|
| ------ | -------- | ------- | ----------- |
|
||||||
|
| `load_from` | Yes | N/A | The type of loader class to use. |
|
||||||
|
| `only_auto_resume` | No | `False` | If true, the loader will only load the model if the run is being auto resumed. |
|
||||||
|
|
||||||
If using `local`
|
If using `local`
|
||||||
| Option | Required | Default | Description |
|
| Option | Required | Default | Description |
|
||||||
| ------ | -------- | ------- | ----------- |
|
| ------ | -------- | ------- | ----------- |
|
||||||
|
|||||||
@@ -20,7 +20,7 @@
|
|||||||
},
|
},
|
||||||
"data": {
|
"data": {
|
||||||
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
|
"webdataset_base_url": "pipe:s3cmd get s3://bucket/path/{}.tar -",
|
||||||
"embeddings_url": "s3://bucket/embeddings/path/",
|
"img_embeddings_url": "s3://bucket/img_embeddings/path/",
|
||||||
"num_workers": 4,
|
"num_workers": 4,
|
||||||
"batch_size": 64,
|
"batch_size": 64,
|
||||||
"start_shard": 0,
|
"start_shard": 0,
|
||||||
|
|||||||
102
configs/train_decoder_config.test.json
Normal file
102
configs/train_decoder_config.test.json
Normal file
@@ -0,0 +1,102 @@
|
|||||||
|
{
|
||||||
|
"decoder": {
|
||||||
|
"unets": [
|
||||||
|
{
|
||||||
|
"dim": 16,
|
||||||
|
"image_embed_dim": 768,
|
||||||
|
"cond_dim": 16,
|
||||||
|
"channels": 3,
|
||||||
|
"dim_mults": [1, 2, 4, 8],
|
||||||
|
"attn_dim_head": 16,
|
||||||
|
"attn_heads": 4,
|
||||||
|
"self_attn": [false, true, true, true]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"clip": {
|
||||||
|
"make": "openai",
|
||||||
|
"model": "ViT-L/14"
|
||||||
|
},
|
||||||
|
|
||||||
|
"timesteps": 10,
|
||||||
|
"image_sizes": [64],
|
||||||
|
"channels": 3,
|
||||||
|
"loss_type": "l2",
|
||||||
|
"beta_schedule": ["cosine"],
|
||||||
|
"learned_variance": true
|
||||||
|
},
|
||||||
|
"data": {
|
||||||
|
"webdataset_base_url": "test_data/{}.tar",
|
||||||
|
"num_workers": 4,
|
||||||
|
"batch_size": 4,
|
||||||
|
"start_shard": 0,
|
||||||
|
"end_shard": 9,
|
||||||
|
"shard_width": 1,
|
||||||
|
"index_width": 1,
|
||||||
|
"splits": {
|
||||||
|
"train": 0.75,
|
||||||
|
"val": 0.15,
|
||||||
|
"test": 0.1
|
||||||
|
},
|
||||||
|
"shuffle_train": false,
|
||||||
|
"resample_train": true,
|
||||||
|
"preprocessing": {
|
||||||
|
"RandomResizedCrop": {
|
||||||
|
"size": [224, 224],
|
||||||
|
"scale": [0.75, 1.0],
|
||||||
|
"ratio": [1.0, 1.0]
|
||||||
|
},
|
||||||
|
"ToTensor": true
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"train": {
|
||||||
|
"epochs": 1,
|
||||||
|
"lr": 1e-16,
|
||||||
|
"wd": 0.01,
|
||||||
|
"max_grad_norm": 0.5,
|
||||||
|
"save_every_n_samples": 100,
|
||||||
|
"n_sample_images": 1,
|
||||||
|
"device": "cpu",
|
||||||
|
"epoch_samples": 50,
|
||||||
|
"validation_samples": 5,
|
||||||
|
"use_ema": true,
|
||||||
|
"ema_beta": 0.99,
|
||||||
|
"amp": false,
|
||||||
|
"save_all": false,
|
||||||
|
"save_latest": true,
|
||||||
|
"save_best": true,
|
||||||
|
"unet_training_mask": [true]
|
||||||
|
},
|
||||||
|
"evaluate": {
|
||||||
|
"n_evaluation_samples": 2,
|
||||||
|
"FID": {
|
||||||
|
"feature": 64
|
||||||
|
},
|
||||||
|
"IS": {
|
||||||
|
"feature": 64,
|
||||||
|
"splits": 10
|
||||||
|
},
|
||||||
|
"KID": {
|
||||||
|
"feature": 64,
|
||||||
|
"subset_size": 2
|
||||||
|
},
|
||||||
|
"LPIPS": {
|
||||||
|
"net_type": "vgg",
|
||||||
|
"reduction": "mean"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"tracker": {
|
||||||
|
"overwrite_data_path": true,
|
||||||
|
|
||||||
|
"log": {
|
||||||
|
"log_type": "console"
|
||||||
|
},
|
||||||
|
|
||||||
|
"load": {
|
||||||
|
"load_from": null
|
||||||
|
},
|
||||||
|
|
||||||
|
"save": [{
|
||||||
|
"save_to": "local"
|
||||||
|
}]
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -169,6 +169,11 @@ class BaseClipAdapter(nn.Module):
|
|||||||
self.clip = clip
|
self.clip = clip
|
||||||
self.overrides = kwargs
|
self.overrides = kwargs
|
||||||
|
|
||||||
|
def validate_and_resize_image(self, image):
|
||||||
|
image_size = image.shape[-1]
|
||||||
|
assert image_size >= self.image_size, f'you are passing in an image of size {image_size} but CLIP requires the image size to be at least {self.image_size}'
|
||||||
|
return resize_image_to(image, self.image_size)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def dim_latent(self):
|
def dim_latent(self):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -219,7 +224,7 @@ class XClipAdapter(BaseClipAdapter):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def embed_image(self, image):
|
def embed_image(self, image):
|
||||||
image = resize_image_to(image, self.image_size)
|
image = self.validate_and_resize_image(image)
|
||||||
encoder_output = self.clip.visual_transformer(image)
|
encoder_output = self.clip.visual_transformer(image)
|
||||||
image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:]
|
image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:]
|
||||||
image_embed = self.clip.to_visual_latent(image_cls)
|
image_embed = self.clip.to_visual_latent(image_cls)
|
||||||
@@ -254,7 +259,7 @@ class CoCaAdapter(BaseClipAdapter):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def embed_image(self, image):
|
def embed_image(self, image):
|
||||||
image = resize_image_to(image, self.image_size)
|
image = self.validate_and_resize_image(image)
|
||||||
image_embed, image_encodings = self.clip.embed_image(image)
|
image_embed, image_encodings = self.clip.embed_image(image)
|
||||||
return EmbeddedImage(image_embed, image_encodings)
|
return EmbeddedImage(image_embed, image_encodings)
|
||||||
|
|
||||||
@@ -315,7 +320,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def embed_image(self, image):
|
def embed_image(self, image):
|
||||||
assert not self.cleared
|
assert not self.cleared
|
||||||
image = resize_image_to(image, self.image_size)
|
image = self.validate_and_resize_image(image)
|
||||||
image = self.clip_normalize(image)
|
image = self.clip_normalize(image)
|
||||||
image_embed = self.clip.encode_image(image)
|
image_embed = self.clip.encode_image(image)
|
||||||
return EmbeddedImage(l2norm(image_embed.float()), None)
|
return EmbeddedImage(l2norm(image_embed.float()), None)
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import webdataset as wds
|
import webdataset as wds
|
||||||
import torch
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import fsspec
|
import fsspec
|
||||||
import shutil
|
import shutil
|
||||||
@@ -255,7 +256,7 @@ def create_image_embedding_dataloader(
|
|||||||
)
|
)
|
||||||
if shuffle_num is not None and shuffle_num > 0:
|
if shuffle_num is not None and shuffle_num > 0:
|
||||||
ds.shuffle(1000)
|
ds.shuffle(1000)
|
||||||
return wds.WebLoader(
|
return DataLoader(
|
||||||
ds,
|
ds,
|
||||||
num_workers=num_workers,
|
num_workers=num_workers,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
import urllib.request
|
import urllib.request
|
||||||
import os
|
import os
|
||||||
|
import json
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import shutil
|
import shutil
|
||||||
from itertools import zip_longest
|
from itertools import zip_longest
|
||||||
@@ -37,14 +38,17 @@ class BaseLogger:
|
|||||||
data_path (str): A file path for storing temporary data.
|
data_path (str): A file path for storing temporary data.
|
||||||
verbose (bool): Whether of not to always print logs to the console.
|
verbose (bool): Whether of not to always print logs to the console.
|
||||||
"""
|
"""
|
||||||
def __init__(self, data_path: str, verbose: bool = False, **kwargs):
|
def __init__(self, data_path: str, resume: bool = False, auto_resume: bool = False, verbose: bool = False, **kwargs):
|
||||||
self.data_path = Path(data_path)
|
self.data_path = Path(data_path)
|
||||||
|
self.resume = resume
|
||||||
|
self.auto_resume = auto_resume
|
||||||
self.verbose = verbose
|
self.verbose = verbose
|
||||||
|
|
||||||
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
|
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
|
||||||
"""
|
"""
|
||||||
Initializes the logger.
|
Initializes the logger.
|
||||||
Errors if the logger is invalid.
|
Errors if the logger is invalid.
|
||||||
|
full_config is the config file dict while extra_config is anything else from the script that is not defined the config file.
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
@@ -60,6 +64,14 @@ class BaseLogger:
|
|||||||
def log_error(self, error_string, **kwargs) -> None:
|
def log_error(self, error_string, **kwargs) -> None:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def get_resume_data(self, **kwargs) -> dict:
|
||||||
|
"""
|
||||||
|
Sets tracker attributes that along with { "resume": True } will be used to resume training.
|
||||||
|
It is assumed that after init is called this data will be complete.
|
||||||
|
If the logger does not have any resume functionality, it should return an empty dict.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
class ConsoleLogger(BaseLogger):
|
class ConsoleLogger(BaseLogger):
|
||||||
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
|
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
|
||||||
print("Logging to console")
|
print("Logging to console")
|
||||||
@@ -76,6 +88,9 @@ class ConsoleLogger(BaseLogger):
|
|||||||
def log_error(self, error_string, **kwargs) -> None:
|
def log_error(self, error_string, **kwargs) -> None:
|
||||||
print(error_string)
|
print(error_string)
|
||||||
|
|
||||||
|
def get_resume_data(self, **kwargs) -> dict:
|
||||||
|
return {}
|
||||||
|
|
||||||
class WandbLogger(BaseLogger):
|
class WandbLogger(BaseLogger):
|
||||||
"""
|
"""
|
||||||
Logs to a wandb run.
|
Logs to a wandb run.
|
||||||
@@ -85,7 +100,6 @@ class WandbLogger(BaseLogger):
|
|||||||
wandb_project (str): The wandb project to log to.
|
wandb_project (str): The wandb project to log to.
|
||||||
wandb_run_id (str): The wandb run id to resume.
|
wandb_run_id (str): The wandb run id to resume.
|
||||||
wandb_run_name (str): The wandb run name to use.
|
wandb_run_name (str): The wandb run name to use.
|
||||||
wandb_resume (bool): Whether to resume a wandb run.
|
|
||||||
"""
|
"""
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
data_path: str,
|
data_path: str,
|
||||||
@@ -93,7 +107,6 @@ class WandbLogger(BaseLogger):
|
|||||||
wandb_project: str,
|
wandb_project: str,
|
||||||
wandb_run_id: Optional[str] = None,
|
wandb_run_id: Optional[str] = None,
|
||||||
wandb_run_name: Optional[str] = None,
|
wandb_run_name: Optional[str] = None,
|
||||||
wandb_resume: bool = False,
|
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__(data_path, **kwargs)
|
super().__init__(data_path, **kwargs)
|
||||||
@@ -101,7 +114,6 @@ class WandbLogger(BaseLogger):
|
|||||||
self.project = wandb_project
|
self.project = wandb_project
|
||||||
self.run_id = wandb_run_id
|
self.run_id = wandb_run_id
|
||||||
self.run_name = wandb_run_name
|
self.run_name = wandb_run_name
|
||||||
self.resume = wandb_resume
|
|
||||||
|
|
||||||
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
|
def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None:
|
||||||
assert self.entity is not None, "wandb_entity must be specified for wandb logger"
|
assert self.entity is not None, "wandb_entity must be specified for wandb logger"
|
||||||
@@ -149,6 +161,14 @@ class WandbLogger(BaseLogger):
|
|||||||
print(error_string)
|
print(error_string)
|
||||||
self.wandb.log({"error": error_string, **kwargs}, step=step)
|
self.wandb.log({"error": error_string, **kwargs}, step=step)
|
||||||
|
|
||||||
|
def get_resume_data(self, **kwargs) -> dict:
|
||||||
|
# In order to resume, we need wandb_entity, wandb_project, and wandb_run_id
|
||||||
|
return {
|
||||||
|
"entity": self.entity,
|
||||||
|
"project": self.project,
|
||||||
|
"run_id": self.wandb.run.id
|
||||||
|
}
|
||||||
|
|
||||||
logger_type_map = {
|
logger_type_map = {
|
||||||
'console': ConsoleLogger,
|
'console': ConsoleLogger,
|
||||||
'wandb': WandbLogger,
|
'wandb': WandbLogger,
|
||||||
@@ -168,8 +188,9 @@ class BaseLoader:
|
|||||||
Parameters:
|
Parameters:
|
||||||
data_path (str): A file path for storing temporary data.
|
data_path (str): A file path for storing temporary data.
|
||||||
"""
|
"""
|
||||||
def __init__(self, data_path: str, **kwargs):
|
def __init__(self, data_path: str, only_auto_resume: bool = False, **kwargs):
|
||||||
self.data_path = Path(data_path)
|
self.data_path = Path(data_path)
|
||||||
|
self.only_auto_resume = only_auto_resume
|
||||||
|
|
||||||
def init(self, logger: BaseLogger, **kwargs) -> None:
|
def init(self, logger: BaseLogger, **kwargs) -> None:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -304,6 +325,10 @@ class LocalSaver(BaseSaver):
|
|||||||
def save_file(self, local_path: str, save_path: str, **kwargs) -> None:
|
def save_file(self, local_path: str, save_path: str, **kwargs) -> None:
|
||||||
# Copy the file to save_path
|
# Copy the file to save_path
|
||||||
save_path_file_name = Path(save_path).name
|
save_path_file_name = Path(save_path).name
|
||||||
|
# Make sure parent directory exists
|
||||||
|
save_path_parent = Path(save_path).parent
|
||||||
|
if not save_path_parent.exists():
|
||||||
|
save_path_parent.mkdir(parents=True)
|
||||||
print(f"Saving {save_path_file_name} {self.save_type} to local path {save_path}")
|
print(f"Saving {save_path_file_name} {self.save_type} to local path {save_path}")
|
||||||
shutil.copy(local_path, save_path)
|
shutil.copy(local_path, save_path)
|
||||||
|
|
||||||
@@ -385,11 +410,7 @@ class Tracker:
|
|||||||
def __init__(self, data_path: Optional[str] = DEFAULT_DATA_PATH, overwrite_data_path: bool = False, dummy_mode: bool = False):
|
def __init__(self, data_path: Optional[str] = DEFAULT_DATA_PATH, overwrite_data_path: bool = False, dummy_mode: bool = False):
|
||||||
self.data_path = Path(data_path)
|
self.data_path = Path(data_path)
|
||||||
if not dummy_mode:
|
if not dummy_mode:
|
||||||
if overwrite_data_path:
|
if not overwrite_data_path:
|
||||||
if self.data_path.exists():
|
|
||||||
shutil.rmtree(self.data_path)
|
|
||||||
self.data_path.mkdir(parents=True)
|
|
||||||
else:
|
|
||||||
assert not self.data_path.exists(), f'Data path {self.data_path} already exists. Set overwrite_data_path to True to overwrite.'
|
assert not self.data_path.exists(), f'Data path {self.data_path} already exists. Set overwrite_data_path to True to overwrite.'
|
||||||
if not self.data_path.exists():
|
if not self.data_path.exists():
|
||||||
self.data_path.mkdir(parents=True)
|
self.data_path.mkdir(parents=True)
|
||||||
@@ -398,7 +419,46 @@ class Tracker:
|
|||||||
self.savers: List[BaseSaver]= []
|
self.savers: List[BaseSaver]= []
|
||||||
self.dummy_mode = dummy_mode
|
self.dummy_mode = dummy_mode
|
||||||
|
|
||||||
|
def _load_auto_resume(self) -> bool:
|
||||||
|
# If the file does not exist, we return False. If autoresume is enabled we print a warning so that the user can know that this is the first run.
|
||||||
|
if not self.auto_resume_path.exists():
|
||||||
|
if self.logger.auto_resume:
|
||||||
|
print("Auto_resume is enabled but no auto_resume.json file exists. Assuming this is the first run.")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Now we know that the autoresume file exists, but if we are not auto resuming we should remove it so that we don't accidentally load it next time
|
||||||
|
if not self.logger.auto_resume:
|
||||||
|
print(f'Removing auto_resume.json because auto_resume is not enabled in the config')
|
||||||
|
self.auto_resume_path.unlink()
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Otherwise we read the json into a dictionary will will override parts of logger.__dict__
|
||||||
|
with open(self.auto_resume_path, 'r') as f:
|
||||||
|
auto_resume_dict = json.load(f)
|
||||||
|
# Check if the logger is of the same type as the autoresume save
|
||||||
|
if auto_resume_dict["logger_type"] != self.logger.__class__.__name__:
|
||||||
|
raise Exception(f'The logger type in the auto_resume file is {auto_resume_dict["logger_type"]} but the current logger is {self.logger.__class__.__name__}. Either use the original logger type, set `auto_resume` to `False`, or delete your existing tracker-data folder.')
|
||||||
|
# Then we are ready to override the logger with the autoresume save
|
||||||
|
self.logger.__dict__["resume"] = True
|
||||||
|
print(f"Updating {self.logger.__dict__} with {auto_resume_dict}")
|
||||||
|
self.logger.__dict__.update(auto_resume_dict)
|
||||||
|
return True
|
||||||
|
|
||||||
|
def _save_auto_resume(self):
|
||||||
|
# Gets the autoresume dict from the logger and adds "logger_type" to it then saves it to the auto_resume file
|
||||||
|
auto_resume_dict = self.logger.get_resume_data()
|
||||||
|
auto_resume_dict['logger_type'] = self.logger.__class__.__name__
|
||||||
|
with open(self.auto_resume_path, 'w') as f:
|
||||||
|
json.dump(auto_resume_dict, f)
|
||||||
|
|
||||||
def init(self, full_config: BaseModel, extra_config: dict):
|
def init(self, full_config: BaseModel, extra_config: dict):
|
||||||
|
self.auto_resume_path = self.data_path / 'auto_resume.json'
|
||||||
|
# Check for resuming the run
|
||||||
|
self.did_auto_resume = self._load_auto_resume()
|
||||||
|
if self.did_auto_resume:
|
||||||
|
print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n')
|
||||||
|
print(f"New logger config: {self.logger.__dict__}")
|
||||||
|
|
||||||
assert self.logger is not None, '`logger` must be set before `init` is called'
|
assert self.logger is not None, '`logger` must be set before `init` is called'
|
||||||
if self.dummy_mode:
|
if self.dummy_mode:
|
||||||
# The only thing we need is a loader
|
# The only thing we need is a loader
|
||||||
@@ -406,12 +466,17 @@ class Tracker:
|
|||||||
self.loader.init(self.logger)
|
self.loader.init(self.logger)
|
||||||
return
|
return
|
||||||
assert len(self.savers) > 0, '`savers` must be set before `init` is called'
|
assert len(self.savers) > 0, '`savers` must be set before `init` is called'
|
||||||
|
|
||||||
self.logger.init(full_config, extra_config)
|
self.logger.init(full_config, extra_config)
|
||||||
if self.loader is not None:
|
if self.loader is not None:
|
||||||
self.loader.init(self.logger)
|
self.loader.init(self.logger)
|
||||||
for saver in self.savers:
|
for saver in self.savers:
|
||||||
saver.init(self.logger)
|
saver.init(self.logger)
|
||||||
|
|
||||||
|
if self.logger.auto_resume:
|
||||||
|
# Then we need to save the autoresume file. It is assumed after logger.init is called that the logger is ready to be saved.
|
||||||
|
self._save_auto_resume()
|
||||||
|
|
||||||
def add_logger(self, logger: BaseLogger):
|
def add_logger(self, logger: BaseLogger):
|
||||||
self.logger = logger
|
self.logger = logger
|
||||||
|
|
||||||
@@ -503,11 +568,16 @@ class Tracker:
|
|||||||
self.logger.log_error(f'Error saving checkpoint: {e}', **kwargs)
|
self.logger.log_error(f'Error saving checkpoint: {e}', **kwargs)
|
||||||
print(f'Error saving checkpoint: {e}')
|
print(f'Error saving checkpoint: {e}')
|
||||||
|
|
||||||
|
@property
|
||||||
|
def can_recall(self):
|
||||||
|
# Defines whether a recall can be performed.
|
||||||
|
return self.loader is not None and (not self.loader.only_auto_resume or self.did_auto_resume)
|
||||||
|
|
||||||
def recall(self):
|
def recall(self):
|
||||||
if self.loader is not None:
|
if self.can_recall:
|
||||||
return self.loader.recall()
|
return self.loader.recall()
|
||||||
else:
|
else:
|
||||||
raise ValueError('No loader specified')
|
raise ValueError('Tried to recall, but no loader was set or auto-resume was not performed.')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -47,6 +47,8 @@ class TrainSplitConfig(BaseModel):
|
|||||||
|
|
||||||
class TrackerLogConfig(BaseModel):
|
class TrackerLogConfig(BaseModel):
|
||||||
log_type: str = 'console'
|
log_type: str = 'console'
|
||||||
|
resume: bool = False # For logs that are saved to unique locations, resume a previous run
|
||||||
|
auto_resume: bool = False # If the process crashes and restarts, resume from the run that crashed
|
||||||
verbose: bool = False
|
verbose: bool = False
|
||||||
|
|
||||||
class Config:
|
class Config:
|
||||||
@@ -59,6 +61,7 @@ class TrackerLogConfig(BaseModel):
|
|||||||
|
|
||||||
class TrackerLoadConfig(BaseModel):
|
class TrackerLoadConfig(BaseModel):
|
||||||
load_from: Optional[str] = None
|
load_from: Optional[str] = None
|
||||||
|
only_auto_resume: bool = False # Only attempt to load if the logger is auto-resuming
|
||||||
|
|
||||||
class Config:
|
class Config:
|
||||||
extra = "allow"
|
extra = "allow"
|
||||||
|
|||||||
@@ -21,7 +21,7 @@ import pytorch_warmup as warmup
|
|||||||
|
|
||||||
from ema_pytorch import EMA
|
from ema_pytorch import EMA
|
||||||
|
|
||||||
from accelerate import Accelerator
|
from accelerate import Accelerator, DistributedType
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@@ -76,6 +76,7 @@ def cast_torch_tensor(fn):
|
|||||||
def inner(model, *args, **kwargs):
|
def inner(model, *args, **kwargs):
|
||||||
device = kwargs.pop('_device', next(model.parameters()).device)
|
device = kwargs.pop('_device', next(model.parameters()).device)
|
||||||
cast_device = kwargs.pop('_cast_device', True)
|
cast_device = kwargs.pop('_cast_device', True)
|
||||||
|
cast_deepspeed_precision = kwargs.pop('_cast_deepspeed_precision', True)
|
||||||
|
|
||||||
kwargs_keys = kwargs.keys()
|
kwargs_keys = kwargs.keys()
|
||||||
all_args = (*args, *kwargs.values())
|
all_args = (*args, *kwargs.values())
|
||||||
@@ -85,6 +86,21 @@ def cast_torch_tensor(fn):
|
|||||||
if cast_device:
|
if cast_device:
|
||||||
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
||||||
|
|
||||||
|
if cast_deepspeed_precision:
|
||||||
|
try:
|
||||||
|
accelerator = model.accelerator
|
||||||
|
if accelerator is not None and accelerator.distributed_type == DistributedType.DEEPSPEED:
|
||||||
|
cast_type_map = {
|
||||||
|
"fp16": torch.half,
|
||||||
|
"bf16": torch.bfloat16,
|
||||||
|
"no": torch.float
|
||||||
|
}
|
||||||
|
precision_type = cast_type_map[accelerator.mixed_precision]
|
||||||
|
all_args = tuple(map(lambda t: t.to(precision_type) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
|
||||||
|
except AttributeError:
|
||||||
|
# Then this model doesn't have an accelerator
|
||||||
|
pass
|
||||||
|
|
||||||
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
|
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
|
||||||
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
|
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
|
||||||
|
|
||||||
@@ -446,6 +462,7 @@ class DecoderTrainer(nn.Module):
|
|||||||
self,
|
self,
|
||||||
decoder,
|
decoder,
|
||||||
accelerator = None,
|
accelerator = None,
|
||||||
|
dataloaders = None,
|
||||||
use_ema = True,
|
use_ema = True,
|
||||||
lr = 1e-4,
|
lr = 1e-4,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
@@ -508,9 +525,21 @@ class DecoderTrainer(nn.Module):
|
|||||||
|
|
||||||
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
|
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
|
||||||
|
|
||||||
decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers))
|
if self.accelerator.distributed_type == DistributedType.DEEPSPEED and decoder.clip is not None:
|
||||||
schedulers = list(self.accelerator.prepare(*schedulers))
|
# Then we need to make sure clip is using the correct precision or else deepspeed will error
|
||||||
|
cast_type_map = {
|
||||||
|
"fp16": torch.half,
|
||||||
|
"bf16": torch.bfloat16,
|
||||||
|
"no": torch.float
|
||||||
|
}
|
||||||
|
precision_type = cast_type_map[accelerator.mixed_precision]
|
||||||
|
assert precision_type == torch.float, "DeepSpeed currently only supports float32 precision when using on the fly embedding generation from clip"
|
||||||
|
clip = decoder.clip
|
||||||
|
clip.to(precision_type)
|
||||||
|
decoder, train_loader, val_loader, *optimizers = list(self.accelerator.prepare(decoder, dataloaders["train"], dataloaders["val"], *optimizers))
|
||||||
|
|
||||||
|
self.train_loader = train_loader
|
||||||
|
self.val_loader = val_loader
|
||||||
self.decoder = decoder
|
self.decoder = decoder
|
||||||
|
|
||||||
# store optimizers
|
# store optimizers
|
||||||
@@ -676,6 +705,9 @@ class DecoderTrainer(nn.Module):
|
|||||||
|
|
||||||
total_loss = 0.
|
total_loss = 0.
|
||||||
|
|
||||||
|
|
||||||
|
using_amp = self.accelerator.mixed_precision != 'no'
|
||||||
|
|
||||||
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
|
||||||
with self.accelerator.autocast():
|
with self.accelerator.autocast():
|
||||||
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
loss = self.decoder(*chunked_args, unet_number = unet_number, **chunked_kwargs)
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
__version__ = '0.16.19'
|
__version__ = '0.18.0'
|
||||||
|
|||||||
BIN
test_data/0.tar
Normal file
BIN
test_data/0.tar
Normal file
Binary file not shown.
BIN
test_data/1.tar
Normal file
BIN
test_data/1.tar
Normal file
Binary file not shown.
BIN
test_data/2.tar
Normal file
BIN
test_data/2.tar
Normal file
Binary file not shown.
BIN
test_data/3.tar
Normal file
BIN
test_data/3.tar
Normal file
Binary file not shown.
BIN
test_data/4.tar
Normal file
BIN
test_data/4.tar
Normal file
Binary file not shown.
BIN
test_data/5.tar
Normal file
BIN
test_data/5.tar
Normal file
Binary file not shown.
BIN
test_data/6.tar
Normal file
BIN
test_data/6.tar
Normal file
Binary file not shown.
BIN
test_data/7.tar
Normal file
BIN
test_data/7.tar
Normal file
Binary file not shown.
BIN
test_data/8.tar
Normal file
BIN
test_data/8.tar
Normal file
Binary file not shown.
BIN
test_data/9.tar
Normal file
BIN
test_data/9.tar
Normal file
Binary file not shown.
@@ -132,7 +132,7 @@ def get_example_data(dataloader, device, n=5):
|
|||||||
break
|
break
|
||||||
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
|
return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n]))
|
||||||
|
|
||||||
def generate_samples(trainer, example_data, condition_on_text_encodings=False, text_prepend=""):
|
def generate_samples(trainer, example_data, condition_on_text_encodings=False, text_prepend="", match_image_size=True):
|
||||||
"""
|
"""
|
||||||
Takes example data and generates images from the embeddings
|
Takes example data and generates images from the embeddings
|
||||||
Returns three lists: real images, generated images, and captions
|
Returns three lists: real images, generated images, and captions
|
||||||
@@ -160,6 +160,9 @@ def generate_samples(trainer, example_data, condition_on_text_encodings=False, t
|
|||||||
samples = trainer.sample(**sample_params)
|
samples = trainer.sample(**sample_params)
|
||||||
generated_images = list(samples)
|
generated_images = list(samples)
|
||||||
captions = [text_prepend + txt for txt in txts]
|
captions = [text_prepend + txt for txt in txts]
|
||||||
|
if match_image_size:
|
||||||
|
generated_image_size = generated_images[0].shape[-1]
|
||||||
|
real_images = [resize_image_to(image, generated_image_size, clamp_range=(0, 1)) for image in real_images]
|
||||||
return real_images, generated_images, captions
|
return real_images, generated_images, captions
|
||||||
|
|
||||||
def generate_grid_samples(trainer, examples, condition_on_text_encodings=False, text_prepend=""):
|
def generate_grid_samples(trainer, examples, condition_on_text_encodings=False, text_prepend=""):
|
||||||
@@ -167,14 +170,6 @@ def generate_grid_samples(trainer, examples, condition_on_text_encodings=False,
|
|||||||
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
|
Generates samples and uses torchvision to put them in a side by side grid for easy viewing
|
||||||
"""
|
"""
|
||||||
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings, text_prepend)
|
real_images, generated_images, captions = generate_samples(trainer, examples, condition_on_text_encodings, text_prepend)
|
||||||
|
|
||||||
real_image_size = real_images[0].shape[-1]
|
|
||||||
generated_image_size = generated_images[0].shape[-1]
|
|
||||||
|
|
||||||
# training images may be larger than the generated one
|
|
||||||
if real_image_size > generated_image_size:
|
|
||||||
real_images = [resize_image_to(image, generated_image_size) for image in real_images]
|
|
||||||
|
|
||||||
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)]
|
||||||
return grid_images, captions
|
return grid_images, captions
|
||||||
|
|
||||||
@@ -279,6 +274,7 @@ def train(
|
|||||||
trainer = DecoderTrainer(
|
trainer = DecoderTrainer(
|
||||||
decoder=decoder,
|
decoder=decoder,
|
||||||
accelerator=accelerator,
|
accelerator=accelerator,
|
||||||
|
dataloaders=dataloaders,
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -289,9 +285,8 @@ def train(
|
|||||||
sample = 0
|
sample = 0
|
||||||
samples_seen = 0
|
samples_seen = 0
|
||||||
val_sample = 0
|
val_sample = 0
|
||||||
step = lambda: int(trainer.step.item())
|
|
||||||
|
|
||||||
if tracker.loader is not None:
|
if tracker.can_recall:
|
||||||
start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer)
|
start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer)
|
||||||
if next_task == 'train':
|
if next_task == 'train':
|
||||||
sample = recalled_sample
|
sample = recalled_sample
|
||||||
@@ -304,6 +299,8 @@ def train(
|
|||||||
if not exists(unet_training_mask):
|
if not exists(unet_training_mask):
|
||||||
# Then the unet mask should be true for all unets in the decoder
|
# Then the unet mask should be true for all unets in the decoder
|
||||||
unet_training_mask = [True] * trainer.num_unets
|
unet_training_mask = [True] * trainer.num_unets
|
||||||
|
first_training_unet = min(index for index, mask in enumerate(unet_training_mask) if mask)
|
||||||
|
step = lambda: int(trainer.num_steps_taken(unet_number=first_training_unet+1))
|
||||||
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
assert len(unet_training_mask) == trainer.num_unets, f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}"
|
||||||
|
|
||||||
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
|
accelerator.print(print_ribbon("Generating Example Data", repeat=40))
|
||||||
@@ -326,7 +323,7 @@ def train(
|
|||||||
last_snapshot = sample
|
last_snapshot = sample
|
||||||
|
|
||||||
if next_task == 'train':
|
if next_task == 'train':
|
||||||
for i, (img, emb, txt) in enumerate(dataloaders["train"]):
|
for i, (img, emb, txt) in enumerate(trainer.train_loader):
|
||||||
# We want to count the total number of samples across all processes
|
# We want to count the total number of samples across all processes
|
||||||
sample_length_tensor[0] = len(img)
|
sample_length_tensor[0] = len(img)
|
||||||
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
|
all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this.
|
||||||
@@ -419,7 +416,7 @@ def train(
|
|||||||
timer = Timer()
|
timer = Timer()
|
||||||
accelerator.wait_for_everyone()
|
accelerator.wait_for_everyone()
|
||||||
i = 0
|
i = 0
|
||||||
for i, (img, emb, txt) in enumerate(dataloaders["val"]):
|
for i, (img, emb, txt) in enumerate(trainer.val_loader): # Use the accelerate prepared loader
|
||||||
val_sample_length_tensor[0] = len(img)
|
val_sample_length_tensor[0] = len(img)
|
||||||
all_samples = accelerator.gather(val_sample_length_tensor)
|
all_samples = accelerator.gather(val_sample_length_tensor)
|
||||||
total_samples = all_samples.sum().item()
|
total_samples = all_samples.sum().item()
|
||||||
@@ -524,6 +521,20 @@ def initialize_training(config: TrainDecoderConfig, config_path):
|
|||||||
# Set up accelerator for configurable distributed training
|
# Set up accelerator for configurable distributed training
|
||||||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
|
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters)
|
||||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||||
|
|
||||||
|
if accelerator.num_processes > 1:
|
||||||
|
# We are using distributed training and want to immediately ensure all can connect
|
||||||
|
accelerator.print("Waiting for all processes to connect...")
|
||||||
|
accelerator.wait_for_everyone()
|
||||||
|
accelerator.print("All processes online and connected")
|
||||||
|
|
||||||
|
# If we are in deepspeed fp16 mode, we must ensure learned variance is off
|
||||||
|
if accelerator.mixed_precision == "fp16" and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED and config.decoder.learned_variance:
|
||||||
|
raise ValueError("DeepSpeed fp16 mode does not support learned variance")
|
||||||
|
|
||||||
|
if accelerator.process_index != accelerator.local_process_index and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED:
|
||||||
|
# This is an invalid configuration until we figure out how to handle this
|
||||||
|
raise ValueError("DeepSpeed does not support multi-node distributed training")
|
||||||
|
|
||||||
# Set up data
|
# Set up data
|
||||||
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
|
all_shards = list(range(config.data.start_shard, config.data.end_shard + 1))
|
||||||
|
|||||||
Reference in New Issue
Block a user