mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-14 12:44:28 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b494ed81d4 | ||
|
|
ff3474f05c | ||
|
|
d5293f19f1 | ||
|
|
e697183849 |
@@ -775,7 +775,6 @@ decoder_trainer = DecoderTrainer(
|
|||||||
|
|
||||||
for unet_number in (1, 2):
|
for unet_number in (1, 2):
|
||||||
loss = decoder_trainer(images, text = text, unet_number = unet_number) # use the decoder_trainer forward
|
loss = decoder_trainer(images, text = text, unet_number = unet_number) # use the decoder_trainer forward
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
|
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
|
||||||
|
|
||||||
@@ -839,7 +838,6 @@ diffusion_prior_trainer = DiffusionPriorTrainer(
|
|||||||
)
|
)
|
||||||
|
|
||||||
loss = diffusion_prior_trainer(text, images)
|
loss = diffusion_prior_trainer(text, images)
|
||||||
loss.backward()
|
|
||||||
diffusion_prior_trainer.update() # this will update the optimizer as well as the exponential moving averaged diffusion prior
|
diffusion_prior_trainer.update() # this will update the optimizer as well as the exponential moving averaged diffusion prior
|
||||||
|
|
||||||
# after much of the above three lines in a loop
|
# after much of the above three lines in a loop
|
||||||
@@ -1017,6 +1015,7 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||||
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||||
- [ ] decoder needs one day worth of refactor for tech debt
|
- [ ] decoder needs one day worth of refactor for tech debt
|
||||||
|
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||||
|
|
||||||
## Citations
|
## Citations
|
||||||
|
|
||||||
|
|||||||
@@ -1163,6 +1163,7 @@ class CrossAttention(nn.Module):
|
|||||||
dim_head = 64,
|
dim_head = 64,
|
||||||
heads = 8,
|
heads = 8,
|
||||||
dropout = 0.,
|
dropout = 0.,
|
||||||
|
norm_context = False
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
@@ -1172,7 +1173,7 @@ class CrossAttention(nn.Module):
|
|||||||
context_dim = default(context_dim, dim)
|
context_dim = default(context_dim, dim)
|
||||||
|
|
||||||
self.norm = LayerNorm(dim)
|
self.norm = LayerNorm(dim)
|
||||||
self.norm_context = LayerNorm(context_dim)
|
self.norm_context = LayerNorm(context_dim) if norm_context else nn.Identity()
|
||||||
self.dropout = nn.Dropout(dropout)
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
||||||
@@ -1378,6 +1379,9 @@ class Unet(nn.Module):
|
|||||||
Rearrange('b (n d) -> b n d', n = num_image_tokens)
|
Rearrange('b (n d) -> b n d', n = num_image_tokens)
|
||||||
) if image_embed_dim != cond_dim else nn.Identity()
|
) if image_embed_dim != cond_dim else nn.Identity()
|
||||||
|
|
||||||
|
self.norm_cond = nn.LayerNorm(cond_dim)
|
||||||
|
self.norm_mid_cond = nn.LayerNorm(cond_dim)
|
||||||
|
|
||||||
# text encoding conditioning (optional)
|
# text encoding conditioning (optional)
|
||||||
|
|
||||||
self.text_to_cond = None
|
self.text_to_cond = None
|
||||||
@@ -1593,6 +1597,11 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
|
mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
|
||||||
|
|
||||||
|
# normalize conditioning tokens
|
||||||
|
|
||||||
|
c = self.norm_cond(c)
|
||||||
|
mid_c = self.norm_mid_cond(mid_c)
|
||||||
|
|
||||||
# go through the layers of the unet, down and up
|
# go through the layers of the unet, down and up
|
||||||
|
|
||||||
hiddens = []
|
hiddens = []
|
||||||
|
|||||||
@@ -10,13 +10,14 @@ def get_optimizer(
|
|||||||
lr = 2e-5,
|
lr = 2e-5,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
betas = (0.9, 0.999),
|
betas = (0.9, 0.999),
|
||||||
|
eps = 1e-8,
|
||||||
filter_by_requires_grad = False
|
filter_by_requires_grad = False
|
||||||
):
|
):
|
||||||
if filter_by_requires_grad:
|
if filter_by_requires_grad:
|
||||||
params = list(filter(lambda t: t.requires_grad, params))
|
params = list(filter(lambda t: t.requires_grad, params))
|
||||||
|
|
||||||
if wd == 0:
|
if wd == 0:
|
||||||
return Adam(params, lr = lr, betas = betas)
|
return Adam(params, lr = lr, betas = betas, eps = eps)
|
||||||
|
|
||||||
params = set(params)
|
params = set(params)
|
||||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||||
@@ -26,4 +27,4 @@ def get_optimizer(
|
|||||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||||
]
|
]
|
||||||
|
|
||||||
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas)
|
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||||
|
|||||||
@@ -90,7 +90,7 @@ class EMA(nn.Module):
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model,
|
model,
|
||||||
beta = 0.99,
|
beta = 0.9999,
|
||||||
update_after_step = 1000,
|
update_after_step = 1000,
|
||||||
update_every = 10,
|
update_every = 10,
|
||||||
):
|
):
|
||||||
@@ -147,6 +147,7 @@ class DiffusionPriorTrainer(nn.Module):
|
|||||||
use_ema = True,
|
use_ema = True,
|
||||||
lr = 3e-4,
|
lr = 3e-4,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
|
eps = 1e-6,
|
||||||
max_grad_norm = None,
|
max_grad_norm = None,
|
||||||
amp = False,
|
amp = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
@@ -173,6 +174,7 @@ class DiffusionPriorTrainer(nn.Module):
|
|||||||
diffusion_prior.parameters(),
|
diffusion_prior.parameters(),
|
||||||
lr = lr,
|
lr = lr,
|
||||||
wd = wd,
|
wd = wd,
|
||||||
|
eps = eps,
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -212,7 +214,9 @@ class DiffusionPriorTrainer(nn.Module):
|
|||||||
):
|
):
|
||||||
with autocast(enabled = self.amp):
|
with autocast(enabled = self.amp):
|
||||||
loss = self.diffusion_prior(*args, **kwargs)
|
loss = self.diffusion_prior(*args, **kwargs)
|
||||||
return self.scaler.scale(loss / divisor)
|
scaled_loss = self.scaler.scale(loss / divisor)
|
||||||
|
scaled_loss.backward()
|
||||||
|
return loss.item()
|
||||||
|
|
||||||
# decoder trainer
|
# decoder trainer
|
||||||
|
|
||||||
@@ -223,6 +227,7 @@ class DecoderTrainer(nn.Module):
|
|||||||
use_ema = True,
|
use_ema = True,
|
||||||
lr = 2e-5,
|
lr = 2e-5,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
|
eps = 1e-8,
|
||||||
max_grad_norm = None,
|
max_grad_norm = None,
|
||||||
amp = False,
|
amp = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
@@ -247,13 +252,14 @@ class DecoderTrainer(nn.Module):
|
|||||||
# be able to finely customize learning rate, weight decay
|
# be able to finely customize learning rate, weight decay
|
||||||
# per unet
|
# per unet
|
||||||
|
|
||||||
lr, wd = map(partial(cast_tuple, length = self.num_unets), (lr, wd))
|
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
|
||||||
|
|
||||||
for ind, (unet, unet_lr, unet_wd) in enumerate(zip(self.decoder.unets, lr, wd)):
|
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
|
||||||
optimizer = get_optimizer(
|
optimizer = get_optimizer(
|
||||||
unet.parameters(),
|
unet.parameters(),
|
||||||
lr = unet_lr,
|
lr = unet_lr,
|
||||||
wd = unet_wd,
|
wd = unet_wd,
|
||||||
|
eps = unet_eps,
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -326,4 +332,6 @@ class DecoderTrainer(nn.Module):
|
|||||||
):
|
):
|
||||||
with autocast(enabled = self.amp):
|
with autocast(enabled = self.amp):
|
||||||
loss = self.decoder(x, unet_number = unet_number, **kwargs)
|
loss = self.decoder(x, unet_number = unet_number, **kwargs)
|
||||||
return self.scale(loss / divisor, unet_number = unet_number)
|
scaled_loss = self.scale(loss / divisor, unet_number = unet_number)
|
||||||
|
scaled_loss.backward()
|
||||||
|
return loss.item()
|
||||||
|
|||||||
Reference in New Issue
Block a user