mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-14 10:24:31 +01:00
Compare commits
8 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b494ed81d4 | ||
|
|
ff3474f05c | ||
|
|
d5293f19f1 | ||
|
|
e697183849 | ||
|
|
591d37e266 | ||
|
|
d1f02e8f49 | ||
|
|
9faab59b23 | ||
|
|
5d27029e98 |
@@ -775,7 +775,6 @@ decoder_trainer = DecoderTrainer(
|
|||||||
|
|
||||||
for unet_number in (1, 2):
|
for unet_number in (1, 2):
|
||||||
loss = decoder_trainer(images, text = text, unet_number = unet_number) # use the decoder_trainer forward
|
loss = decoder_trainer(images, text = text, unet_number = unet_number) # use the decoder_trainer forward
|
||||||
loss.backward()
|
|
||||||
|
|
||||||
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
|
decoder_trainer.update(unet_number) # update the specific unet as well as its exponential moving average
|
||||||
|
|
||||||
@@ -839,7 +838,6 @@ diffusion_prior_trainer = DiffusionPriorTrainer(
|
|||||||
)
|
)
|
||||||
|
|
||||||
loss = diffusion_prior_trainer(text, images)
|
loss = diffusion_prior_trainer(text, images)
|
||||||
loss.backward()
|
|
||||||
diffusion_prior_trainer.update() # this will update the optimizer as well as the exponential moving averaged diffusion prior
|
diffusion_prior_trainer.update() # this will update the optimizer as well as the exponential moving averaged diffusion prior
|
||||||
|
|
||||||
# after much of the above three lines in a loop
|
# after much of the above three lines in a loop
|
||||||
@@ -1017,6 +1015,7 @@ Once built, images will be saved to the same directory the command is invoked
|
|||||||
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
- [ ] offer save / load methods on the trainer classes to automatically take care of state dicts for scalers / optimizers / saving versions and checking for breaking changes
|
||||||
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
- [ ] bring in skip-layer excitatons (from lightweight gan paper) to see if it helps for either decoder of unet or vqgan-vae training
|
||||||
- [ ] decoder needs one day worth of refactor for tech debt
|
- [ ] decoder needs one day worth of refactor for tech debt
|
||||||
|
- [ ] allow for unet to be able to condition non-cross attention style as well
|
||||||
|
|
||||||
## Citations
|
## Citations
|
||||||
|
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
import math
|
import math
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from inspect import isfunction
|
from inspect import isfunction
|
||||||
from functools import partial
|
from functools import partial, wraps
|
||||||
from contextlib import contextmanager
|
from contextlib import contextmanager
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@@ -45,6 +45,14 @@ def exists(val):
|
|||||||
def identity(t, *args, **kwargs):
|
def identity(t, *args, **kwargs):
|
||||||
return t
|
return t
|
||||||
|
|
||||||
|
def maybe(fn):
|
||||||
|
@wraps(fn)
|
||||||
|
def inner(x):
|
||||||
|
if not exists(x):
|
||||||
|
return x
|
||||||
|
return fn(x)
|
||||||
|
return inner
|
||||||
|
|
||||||
def default(val, d):
|
def default(val, d):
|
||||||
if exists(val):
|
if exists(val):
|
||||||
return val
|
return val
|
||||||
@@ -606,7 +614,6 @@ class Attention(nn.Module):
|
|||||||
heads = 8,
|
heads = 8,
|
||||||
dropout = 0.,
|
dropout = 0.,
|
||||||
causal = False,
|
causal = False,
|
||||||
post_norm = False,
|
|
||||||
rotary_emb = None
|
rotary_emb = None
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@@ -616,7 +623,6 @@ class Attention(nn.Module):
|
|||||||
|
|
||||||
self.causal = causal
|
self.causal = causal
|
||||||
self.norm = LayerNorm(dim)
|
self.norm = LayerNorm(dim)
|
||||||
self.post_norm = LayerNorm(dim) # sandwich norm from Coqview paper + Normformer
|
|
||||||
self.dropout = nn.Dropout(dropout)
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
||||||
@@ -627,7 +633,7 @@ class Attention(nn.Module):
|
|||||||
|
|
||||||
self.to_out = nn.Sequential(
|
self.to_out = nn.Sequential(
|
||||||
nn.Linear(inner_dim, dim, bias = False),
|
nn.Linear(inner_dim, dim, bias = False),
|
||||||
LayerNorm(dim) if post_norm else nn.Identity()
|
LayerNorm(dim)
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x, mask = None, attn_bias = None):
|
def forward(self, x, mask = None, attn_bias = None):
|
||||||
@@ -684,8 +690,7 @@ class Attention(nn.Module):
|
|||||||
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
out = einsum('b h i j, b j d -> b h i d', attn, v)
|
||||||
|
|
||||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||||
out = self.to_out(out)
|
return self.to_out(out)
|
||||||
return self.post_norm(out)
|
|
||||||
|
|
||||||
class CausalTransformer(nn.Module):
|
class CausalTransformer(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -711,7 +716,7 @@ class CausalTransformer(nn.Module):
|
|||||||
self.layers = nn.ModuleList([])
|
self.layers = nn.ModuleList([])
|
||||||
for _ in range(depth):
|
for _ in range(depth):
|
||||||
self.layers.append(nn.ModuleList([
|
self.layers.append(nn.ModuleList([
|
||||||
Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, post_norm = normformer, rotary_emb = rotary_emb),
|
Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, rotary_emb = rotary_emb),
|
||||||
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer)
|
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer)
|
||||||
]))
|
]))
|
||||||
|
|
||||||
@@ -1158,6 +1163,7 @@ class CrossAttention(nn.Module):
|
|||||||
dim_head = 64,
|
dim_head = 64,
|
||||||
heads = 8,
|
heads = 8,
|
||||||
dropout = 0.,
|
dropout = 0.,
|
||||||
|
norm_context = False
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.scale = dim_head ** -0.5
|
self.scale = dim_head ** -0.5
|
||||||
@@ -1167,13 +1173,17 @@ class CrossAttention(nn.Module):
|
|||||||
context_dim = default(context_dim, dim)
|
context_dim = default(context_dim, dim)
|
||||||
|
|
||||||
self.norm = LayerNorm(dim)
|
self.norm = LayerNorm(dim)
|
||||||
self.norm_context = LayerNorm(context_dim)
|
self.norm_context = LayerNorm(context_dim) if norm_context else nn.Identity()
|
||||||
self.dropout = nn.Dropout(dropout)
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
self.null_kv = nn.Parameter(torch.randn(2, dim_head))
|
||||||
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
||||||
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
|
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
|
||||||
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
|
||||||
|
self.to_out = nn.Sequential(
|
||||||
|
nn.Linear(inner_dim, dim, bias = False),
|
||||||
|
LayerNorm(dim)
|
||||||
|
)
|
||||||
|
|
||||||
def forward(self, x, context, mask = None):
|
def forward(self, x, context, mask = None):
|
||||||
b, n, device = *x.shape[:2], x.device
|
b, n, device = *x.shape[:2], x.device
|
||||||
@@ -1369,6 +1379,9 @@ class Unet(nn.Module):
|
|||||||
Rearrange('b (n d) -> b n d', n = num_image_tokens)
|
Rearrange('b (n d) -> b n d', n = num_image_tokens)
|
||||||
) if image_embed_dim != cond_dim else nn.Identity()
|
) if image_embed_dim != cond_dim else nn.Identity()
|
||||||
|
|
||||||
|
self.norm_cond = nn.LayerNorm(cond_dim)
|
||||||
|
self.norm_mid_cond = nn.LayerNorm(cond_dim)
|
||||||
|
|
||||||
# text encoding conditioning (optional)
|
# text encoding conditioning (optional)
|
||||||
|
|
||||||
self.text_to_cond = None
|
self.text_to_cond = None
|
||||||
@@ -1584,6 +1597,11 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
|
mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2)
|
||||||
|
|
||||||
|
# normalize conditioning tokens
|
||||||
|
|
||||||
|
c = self.norm_cond(c)
|
||||||
|
mid_c = self.norm_mid_cond(mid_c)
|
||||||
|
|
||||||
# go through the layers of the unet, down and up
|
# go through the layers of the unet, down and up
|
||||||
|
|
||||||
hiddens = []
|
hiddens = []
|
||||||
@@ -1844,6 +1862,8 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
b = shape[0]
|
b = shape[0]
|
||||||
img = torch.randn(shape, device = device)
|
img = torch.randn(shape, device = device)
|
||||||
|
|
||||||
|
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||||
|
|
||||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
|
||||||
img = self.p_sample(
|
img = self.p_sample(
|
||||||
unet,
|
unet,
|
||||||
@@ -1868,9 +1888,7 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
# normalize to [-1, 1]
|
# normalize to [-1, 1]
|
||||||
|
|
||||||
x_start = normalize_neg_one_to_one(x_start)
|
x_start = normalize_neg_one_to_one(x_start)
|
||||||
|
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
|
||||||
if exists(lowres_cond_img):
|
|
||||||
lowres_cond_img = normalize_neg_one_to_one(lowres_cond_img)
|
|
||||||
|
|
||||||
# get x_t
|
# get x_t
|
||||||
|
|
||||||
|
|||||||
@@ -7,16 +7,17 @@ def separate_weight_decayable_params(params):
|
|||||||
|
|
||||||
def get_optimizer(
|
def get_optimizer(
|
||||||
params,
|
params,
|
||||||
lr = 3e-4,
|
lr = 2e-5,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
betas = (0.9, 0.999),
|
betas = (0.9, 0.999),
|
||||||
|
eps = 1e-8,
|
||||||
filter_by_requires_grad = False
|
filter_by_requires_grad = False
|
||||||
):
|
):
|
||||||
if filter_by_requires_grad:
|
if filter_by_requires_grad:
|
||||||
params = list(filter(lambda t: t.requires_grad, params))
|
params = list(filter(lambda t: t.requires_grad, params))
|
||||||
|
|
||||||
if wd == 0:
|
if wd == 0:
|
||||||
return Adam(params, lr = lr, betas = betas)
|
return Adam(params, lr = lr, betas = betas, eps = eps)
|
||||||
|
|
||||||
params = set(params)
|
params = set(params)
|
||||||
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
wd_params, no_wd_params = separate_weight_decayable_params(params)
|
||||||
@@ -26,4 +27,4 @@ def get_optimizer(
|
|||||||
{'params': list(no_wd_params), 'weight_decay': 0},
|
{'params': list(no_wd_params), 'weight_decay': 0},
|
||||||
]
|
]
|
||||||
|
|
||||||
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas)
|
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)
|
||||||
|
|||||||
@@ -90,7 +90,7 @@ class EMA(nn.Module):
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model,
|
model,
|
||||||
beta = 0.99,
|
beta = 0.9999,
|
||||||
update_after_step = 1000,
|
update_after_step = 1000,
|
||||||
update_every = 10,
|
update_every = 10,
|
||||||
):
|
):
|
||||||
@@ -147,6 +147,7 @@ class DiffusionPriorTrainer(nn.Module):
|
|||||||
use_ema = True,
|
use_ema = True,
|
||||||
lr = 3e-4,
|
lr = 3e-4,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
|
eps = 1e-6,
|
||||||
max_grad_norm = None,
|
max_grad_norm = None,
|
||||||
amp = False,
|
amp = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
@@ -173,6 +174,7 @@ class DiffusionPriorTrainer(nn.Module):
|
|||||||
diffusion_prior.parameters(),
|
diffusion_prior.parameters(),
|
||||||
lr = lr,
|
lr = lr,
|
||||||
wd = wd,
|
wd = wd,
|
||||||
|
eps = eps,
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -212,7 +214,9 @@ class DiffusionPriorTrainer(nn.Module):
|
|||||||
):
|
):
|
||||||
with autocast(enabled = self.amp):
|
with autocast(enabled = self.amp):
|
||||||
loss = self.diffusion_prior(*args, **kwargs)
|
loss = self.diffusion_prior(*args, **kwargs)
|
||||||
return self.scaler.scale(loss / divisor)
|
scaled_loss = self.scaler.scale(loss / divisor)
|
||||||
|
scaled_loss.backward()
|
||||||
|
return loss.item()
|
||||||
|
|
||||||
# decoder trainer
|
# decoder trainer
|
||||||
|
|
||||||
@@ -221,8 +225,9 @@ class DecoderTrainer(nn.Module):
|
|||||||
self,
|
self,
|
||||||
decoder,
|
decoder,
|
||||||
use_ema = True,
|
use_ema = True,
|
||||||
lr = 3e-4,
|
lr = 2e-5,
|
||||||
wd = 1e-2,
|
wd = 1e-2,
|
||||||
|
eps = 1e-8,
|
||||||
max_grad_norm = None,
|
max_grad_norm = None,
|
||||||
amp = False,
|
amp = False,
|
||||||
**kwargs
|
**kwargs
|
||||||
@@ -247,13 +252,14 @@ class DecoderTrainer(nn.Module):
|
|||||||
# be able to finely customize learning rate, weight decay
|
# be able to finely customize learning rate, weight decay
|
||||||
# per unet
|
# per unet
|
||||||
|
|
||||||
lr, wd = map(partial(cast_tuple, length = self.num_unets), (lr, wd))
|
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
|
||||||
|
|
||||||
for ind, (unet, unet_lr, unet_wd) in enumerate(zip(self.decoder.unets, lr, wd)):
|
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
|
||||||
optimizer = get_optimizer(
|
optimizer = get_optimizer(
|
||||||
unet.parameters(),
|
unet.parameters(),
|
||||||
lr = unet_lr,
|
lr = unet_lr,
|
||||||
wd = unet_wd,
|
wd = unet_wd,
|
||||||
|
eps = unet_eps,
|
||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -326,4 +332,6 @@ class DecoderTrainer(nn.Module):
|
|||||||
):
|
):
|
||||||
with autocast(enabled = self.amp):
|
with autocast(enabled = self.amp):
|
||||||
loss = self.decoder(x, unet_number = unet_number, **kwargs)
|
loss = self.decoder(x, unet_number = unet_number, **kwargs)
|
||||||
return self.scale(loss / divisor, unet_number = unet_number)
|
scaled_loss = self.scale(loss / divisor, unet_number = unet_number)
|
||||||
|
scaled_loss.backward()
|
||||||
|
return loss.item()
|
||||||
|
|||||||
Reference in New Issue
Block a user