Compare commits

...

3 Commits

2 changed files with 21 additions and 12 deletions

View File

@@ -1,7 +1,7 @@
import math import math
from tqdm import tqdm from tqdm import tqdm
from inspect import isfunction from inspect import isfunction
from functools import partial from functools import partial, wraps
from contextlib import contextmanager from contextlib import contextmanager
from collections import namedtuple from collections import namedtuple
from pathlib import Path from pathlib import Path
@@ -45,6 +45,14 @@ def exists(val):
def identity(t, *args, **kwargs): def identity(t, *args, **kwargs):
return t return t
def maybe(fn):
@wraps(fn)
def inner(x):
if not exists(x):
return x
return fn(x)
return inner
def default(val, d): def default(val, d):
if exists(val): if exists(val):
return val return val
@@ -606,7 +614,6 @@ class Attention(nn.Module):
heads = 8, heads = 8,
dropout = 0., dropout = 0.,
causal = False, causal = False,
post_norm = False,
rotary_emb = None rotary_emb = None
): ):
super().__init__() super().__init__()
@@ -616,7 +623,6 @@ class Attention(nn.Module):
self.causal = causal self.causal = causal
self.norm = LayerNorm(dim) self.norm = LayerNorm(dim)
self.post_norm = LayerNorm(dim) # sandwich norm from Coqview paper + Normformer
self.dropout = nn.Dropout(dropout) self.dropout = nn.Dropout(dropout)
self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.null_kv = nn.Parameter(torch.randn(2, dim_head))
@@ -627,7 +633,7 @@ class Attention(nn.Module):
self.to_out = nn.Sequential( self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim, bias = False), nn.Linear(inner_dim, dim, bias = False),
LayerNorm(dim) if post_norm else nn.Identity() LayerNorm(dim)
) )
def forward(self, x, mask = None, attn_bias = None): def forward(self, x, mask = None, attn_bias = None):
@@ -684,8 +690,7 @@ class Attention(nn.Module):
out = einsum('b h i j, b j d -> b h i d', attn, v) out = einsum('b h i j, b j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)') out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out) return self.to_out(out)
return self.post_norm(out)
class CausalTransformer(nn.Module): class CausalTransformer(nn.Module):
def __init__( def __init__(
@@ -711,7 +716,7 @@ class CausalTransformer(nn.Module):
self.layers = nn.ModuleList([]) self.layers = nn.ModuleList([])
for _ in range(depth): for _ in range(depth):
self.layers.append(nn.ModuleList([ self.layers.append(nn.ModuleList([
Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, post_norm = normformer, rotary_emb = rotary_emb), Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, rotary_emb = rotary_emb),
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer) FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer)
])) ]))
@@ -1173,7 +1178,11 @@ class CrossAttention(nn.Module):
self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.null_kv = nn.Parameter(torch.randn(2, dim_head))
self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False) self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim, bias = False),
LayerNorm(dim)
)
def forward(self, x, context, mask = None): def forward(self, x, context, mask = None):
b, n, device = *x.shape[:2], x.device b, n, device = *x.shape[:2], x.device
@@ -1844,6 +1853,8 @@ class Decoder(BaseGaussianDiffusion):
b = shape[0] b = shape[0]
img = torch.randn(shape, device = device) img = torch.randn(shape, device = device)
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps): for i in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
img = self.p_sample( img = self.p_sample(
unet, unet,
@@ -1868,9 +1879,7 @@ class Decoder(BaseGaussianDiffusion):
# normalize to [-1, 1] # normalize to [-1, 1]
x_start = normalize_neg_one_to_one(x_start) x_start = normalize_neg_one_to_one(x_start)
lowres_cond_img = maybe(normalize_neg_one_to_one)(lowres_cond_img)
if exists(lowres_cond_img):
lowres_cond_img = normalize_neg_one_to_one(lowres_cond_img)
# get x_t # get x_t

View File

@@ -10,7 +10,7 @@ setup(
'dream = dalle2_pytorch.cli:dream' 'dream = dalle2_pytorch.cli:dream'
], ],
}, },
version = '0.2.16', version = '0.2.19',
license='MIT', license='MIT',
description = 'DALL-E 2', description = 'DALL-E 2',
author = 'Phil Wang', author = 'Phil Wang',