mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-15 00:15:07 +01:00
Compare commits
2 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e2f9615afa | ||
|
|
0d1c07c803 |
@@ -499,9 +499,7 @@ loss.backward()
|
|||||||
|
|
||||||
Although there is the possibility they are using an unreleased, more powerful CLIP, you can use one of the released ones, if you do not wish to train your own CLIP from scratch. This will also allow the community to more quickly validate the conclusions of the paper.
|
Although there is the possibility they are using an unreleased, more powerful CLIP, you can use one of the released ones, if you do not wish to train your own CLIP from scratch. This will also allow the community to more quickly validate the conclusions of the paper.
|
||||||
|
|
||||||
First you'll need to install <a href="https://github.com/openai/CLIP#usage">the prerequisites</a>
|
To use a pretrained OpenAI CLIP, simply import `OpenAIClipAdapter` and pass it into the `DiffusionPrior` or `Decoder` like so
|
||||||
|
|
||||||
Then to use a pretrained OpenAI CLIP, simply import `OpenAIClipAdapter` and pass it into the `DiffusionPrior` or `Decoder` like so
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import torch
|
import torch
|
||||||
|
|||||||
@@ -172,11 +172,7 @@ class OpenAIClipAdapter(BaseClipAdapter):
|
|||||||
self,
|
self,
|
||||||
name = 'ViT-B/32'
|
name = 'ViT-B/32'
|
||||||
):
|
):
|
||||||
try:
|
import clip
|
||||||
import clip
|
|
||||||
except ImportError:
|
|
||||||
print('you must install openai clip in order to use this adapter - `pip install git+https://github.com/openai/CLIP.git` - more instructions at https://github.com/openai/CLIP#usage')
|
|
||||||
|
|
||||||
openai_clip, _ = clip.load(name)
|
openai_clip, _ = clip.load(name)
|
||||||
super().__init__(openai_clip)
|
super().__init__(openai_clip)
|
||||||
|
|
||||||
@@ -688,14 +684,14 @@ class DiffusionPriorNetwork(nn.Module):
|
|||||||
|
|
||||||
# classifier free guidance
|
# classifier free guidance
|
||||||
|
|
||||||
cond_prob_mask = prob_mask_like((batch,), cond_drop_prob, device = device)
|
keep_mask = prob_mask_like((batch,), 1 - cond_drop_prob, device = device)
|
||||||
cond_prob_mask = rearrange(cond_prob_mask, 'b -> b 1')
|
keep_mask = rearrange(keep_mask, 'b -> b 1')
|
||||||
|
|
||||||
mask &= cond_prob_mask
|
mask &= keep_mask
|
||||||
|
|
||||||
# whether text embedding is masked or not depends on the classifier free guidance conditional masking
|
# whether text embedding is masked or not depends on the classifier free guidance conditional masking
|
||||||
|
|
||||||
mask = torch.cat((mask, cond_prob_mask), dim = 1)
|
mask = torch.cat((mask, keep_mask), dim = 1)
|
||||||
|
|
||||||
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
|
# whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different)
|
||||||
# but let's just do it right
|
# but let's just do it right
|
||||||
@@ -1208,8 +1204,8 @@ class Unet(nn.Module):
|
|||||||
|
|
||||||
# conditional dropout
|
# conditional dropout
|
||||||
|
|
||||||
cond_prob_mask = prob_mask_like((batch_size,), cond_drop_prob, device = device)
|
keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device = device)
|
||||||
cond_prob_mask = rearrange(cond_prob_mask, 'b -> b 1 1')
|
keep_mask = rearrange(keep_mask, 'b -> b 1 1')
|
||||||
|
|
||||||
# mask out image embedding depending on condition dropout
|
# mask out image embedding depending on condition dropout
|
||||||
# for classifier free guidance
|
# for classifier free guidance
|
||||||
@@ -1220,7 +1216,7 @@ class Unet(nn.Module):
|
|||||||
image_tokens = self.image_to_cond(image_embed)
|
image_tokens = self.image_to_cond(image_embed)
|
||||||
|
|
||||||
image_tokens = torch.where(
|
image_tokens = torch.where(
|
||||||
cond_prob_mask,
|
keep_mask,
|
||||||
image_tokens,
|
image_tokens,
|
||||||
self.null_image_embed
|
self.null_image_embed
|
||||||
)
|
)
|
||||||
@@ -1232,7 +1228,7 @@ class Unet(nn.Module):
|
|||||||
if exists(text_encodings) and self.cond_on_text_encodings:
|
if exists(text_encodings) and self.cond_on_text_encodings:
|
||||||
text_tokens = self.text_to_cond(text_encodings)
|
text_tokens = self.text_to_cond(text_encodings)
|
||||||
text_tokens = torch.where(
|
text_tokens = torch.where(
|
||||||
cond_prob_mask,
|
keep_mask,
|
||||||
text_tokens,
|
text_tokens,
|
||||||
self.null_text_embed[:, :text_tokens.shape[1]]
|
self.null_text_embed[:, :text_tokens.shape[1]]
|
||||||
)
|
)
|
||||||
@@ -1636,4 +1632,3 @@ class DALLE2(nn.Module):
|
|||||||
return images[0]
|
return images[0]
|
||||||
|
|
||||||
return images
|
return images
|
||||||
|
|
||||||
|
|||||||
3
setup.py
3
setup.py
@@ -10,7 +10,7 @@ setup(
|
|||||||
'dream = dalle2_pytorch.cli:dream'
|
'dream = dalle2_pytorch.cli:dream'
|
||||||
],
|
],
|
||||||
},
|
},
|
||||||
version = '0.0.71',
|
version = '0.0.73',
|
||||||
license='MIT',
|
license='MIT',
|
||||||
description = 'DALL-E 2',
|
description = 'DALL-E 2',
|
||||||
author = 'Phil Wang',
|
author = 'Phil Wang',
|
||||||
@@ -23,6 +23,7 @@ setup(
|
|||||||
],
|
],
|
||||||
install_requires=[
|
install_requires=[
|
||||||
'click',
|
'click',
|
||||||
|
'clip-anytorch',
|
||||||
'einops>=0.4',
|
'einops>=0.4',
|
||||||
'einops-exts>=0.0.3',
|
'einops-exts>=0.0.3',
|
||||||
'kornia>=0.5.4',
|
'kornia>=0.5.4',
|
||||||
|
|||||||
Reference in New Issue
Block a user