mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2026-02-20 07:44:27 +01:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
aa900213e7 | ||
|
|
cb26187450 | ||
|
|
625ce23f6b | ||
|
|
dbf4a281f1 |
@@ -647,9 +647,12 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if exists(clip):
|
if exists(clip):
|
||||||
assert isinstance(clip, CLIP)
|
if isinstance(clip, CLIP):
|
||||||
|
clip = XClipAdapter(clip)
|
||||||
|
|
||||||
|
assert isinstance(clip, BaseClipAdapter)
|
||||||
freeze_model_and_make_eval_(clip)
|
freeze_model_and_make_eval_(clip)
|
||||||
self.clip = XClipAdapter(clip)
|
self.clip = clip
|
||||||
else:
|
else:
|
||||||
assert exists(image_embed_dim), 'latent dimension must be given, if training prior network without CLIP given'
|
assert exists(image_embed_dim), 'latent dimension must be given, if training prior network without CLIP given'
|
||||||
self.clip = None
|
self.clip = None
|
||||||
@@ -740,7 +743,7 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
|||||||
text_cond = dict(text_embed = text_embed)
|
text_cond = dict(text_embed = text_embed)
|
||||||
|
|
||||||
if self.condition_on_text_encodings:
|
if self.condition_on_text_encodings:
|
||||||
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text_mask}
|
text_cond = {**text_cond, 'text_encodings': text_encodings, 'mask': text != 0}
|
||||||
|
|
||||||
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
|
image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond)
|
||||||
text_embeds = text_cond['text_embed']
|
text_embeds = text_cond['text_embed']
|
||||||
@@ -1063,13 +1066,14 @@ class Unet(nn.Module):
|
|||||||
self,
|
self,
|
||||||
*,
|
*,
|
||||||
lowres_cond,
|
lowres_cond,
|
||||||
channels
|
channels,
|
||||||
|
cond_on_image_embeds
|
||||||
):
|
):
|
||||||
if lowres_cond == self.lowres_cond and channels == self.channels:
|
if lowres_cond == self.lowres_cond and channels == self.channels and cond_on_image_embeds == self.cond_on_image_embeds:
|
||||||
return self
|
return self
|
||||||
|
|
||||||
updated_kwargs = {**self._locals, 'lowres_cond': lowres_cond, 'channels': channels}
|
updated_kwargs = {'lowres_cond': lowres_cond, 'channels': channels, 'cond_on_image_embeds': cond_on_image_embeds}
|
||||||
return self.__class__(**updated_kwargs)
|
return self.__class__(**{**self._locals, **updated_kwargs})
|
||||||
|
|
||||||
def forward_with_cond_scale(
|
def forward_with_cond_scale(
|
||||||
self,
|
self,
|
||||||
@@ -1248,6 +1252,8 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
clip = XClipAdapter(clip)
|
clip = XClipAdapter(clip)
|
||||||
|
|
||||||
freeze_model_and_make_eval_(clip)
|
freeze_model_and_make_eval_(clip)
|
||||||
|
assert isinstance(clip, BaseClipAdapter)
|
||||||
|
|
||||||
self.clip = clip
|
self.clip = clip
|
||||||
self.clip_image_size = clip.image_size
|
self.clip_image_size = clip.image_size
|
||||||
self.channels = clip.image_channels
|
self.channels = clip.image_channels
|
||||||
@@ -1274,6 +1280,7 @@ class Decoder(BaseGaussianDiffusion):
|
|||||||
|
|
||||||
one_unet = one_unet.cast_model_parameters(
|
one_unet = one_unet.cast_model_parameters(
|
||||||
lowres_cond = not is_first,
|
lowres_cond = not is_first,
|
||||||
|
cond_on_image_embeds = is_first,
|
||||||
channels = unet_channels
|
channels = unet_channels
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -545,6 +545,7 @@ class VQGanVAE(nn.Module):
|
|||||||
l2_recon_loss = False,
|
l2_recon_loss = False,
|
||||||
use_hinge_loss = True,
|
use_hinge_loss = True,
|
||||||
vgg = None,
|
vgg = None,
|
||||||
|
vq_codebook_dim = 256,
|
||||||
vq_codebook_size = 512,
|
vq_codebook_size = 512,
|
||||||
vq_decay = 0.8,
|
vq_decay = 0.8,
|
||||||
vq_commitment_weight = 1.,
|
vq_commitment_weight = 1.,
|
||||||
@@ -579,6 +580,7 @@ class VQGanVAE(nn.Module):
|
|||||||
|
|
||||||
self.vq = VQ(
|
self.vq = VQ(
|
||||||
dim = self.enc_dec.encoded_dim,
|
dim = self.enc_dec.encoded_dim,
|
||||||
|
codebook_dim = vq_codebook_dim,
|
||||||
codebook_size = vq_codebook_size,
|
codebook_size = vq_codebook_size,
|
||||||
decay = vq_decay,
|
decay = vq_decay,
|
||||||
commitment_weight = vq_commitment_weight,
|
commitment_weight = vq_commitment_weight,
|
||||||
|
|||||||
Reference in New Issue
Block a user