mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
just use an assert to make sure clip image channels is never different than the channels of the diffusion prior and decoder, if clip is given
This commit is contained in:
@@ -890,6 +890,8 @@ class DiffusionPrior(BaseGaussianDiffusion):
|
||||
)
|
||||
|
||||
if exists(clip):
|
||||
assert image_channels == clip.image_channels, f'channels of image ({image_channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
|
||||
|
||||
if isinstance(clip, CLIP):
|
||||
clip = XClipAdapter(clip, **clip_adapter_overrides)
|
||||
elif isinstance(clip, CoCa):
|
||||
@@ -1721,6 +1723,7 @@ class Decoder(BaseGaussianDiffusion):
|
||||
self.clip = None
|
||||
if exists(clip):
|
||||
assert not unconditional, 'clip must not be given if doing unconditional image training'
|
||||
assert channels == clip.image_channels, f'channels of image ({channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})'
|
||||
|
||||
if isinstance(clip, CLIP):
|
||||
clip = XClipAdapter(clip, **clip_adapter_overrides)
|
||||
|
||||
Reference in New Issue
Block a user