allow for overriding use of EMA during sampling in decoder trainer with use_non_ema keyword, also fix some issues with automatic normalization of images and low res conditioning image if latent diffusion is in play

This commit is contained in:
Phil Wang
2022-05-16 11:18:30 -07:00
parent 1212f7058d
commit f4016f6302
4 changed files with 80 additions and 10 deletions

View File

@@ -0,0 +1,59 @@
from pathlib import Path
import torch
from torch.utils import data
from torchvision import transforms, utils
from PIL import Image
# helpers functions
def cycle(dl):
while True:
for data in dl:
yield data
# dataset and dataloader
class Dataset(data.Dataset):
def __init__(
self,
folder,
image_size,
exts = ['jpg', 'jpeg', 'png']
):
super().__init__()
self.folder = folder
self.image_size = image_size
self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')]
self.transform = transforms.Compose([
transforms.Resize(image_size),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(image_size),
transforms.ToTensor()
])
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(path)
return self.transform(img)
def get_images_dataloader(
folder,
*,
batch_size,
image_size,
shuffle = True,
cycle_dl = True,
pin_memory = True
):
ds = Dataset(folder, image_size)
dl = data.DataLoader(ds, batch_size = batch_size, shuffle = shuffle, pin_memory = pin_memory)
if cycle_dl:
dl = cycle(dl)
return dl