mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 17:54:20 +01:00
Changed types to be generic instead of functions (#215)
This allows pylance to do proper type hinting and makes developing extensions to the package much easier
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
import json
|
||||
from torchvision import transforms as T
|
||||
from pydantic import BaseModel, validator, root_validator
|
||||
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
|
||||
from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar
|
||||
|
||||
from x_clip import CLIP as XCLIP
|
||||
from coca_pytorch import CoCa
|
||||
@@ -25,11 +25,9 @@ def exists(val):
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
def ListOrTuple(inner_type):
|
||||
return Union[List[inner_type], Tuple[inner_type]]
|
||||
|
||||
def SingularOrIterable(inner_type):
|
||||
return Union[inner_type, ListOrTuple(inner_type)]
|
||||
InnerType = TypeVar('InnerType')
|
||||
ListOrTuple = Union[List[InnerType], Tuple[InnerType]]
|
||||
SingularOrIterable = Union[InnerType, ListOrTuple[InnerType]]
|
||||
|
||||
# general pydantic classes
|
||||
|
||||
@@ -222,13 +220,13 @@ class TrainDiffusionPriorConfig(BaseModel):
|
||||
|
||||
class UnetConfig(BaseModel):
|
||||
dim: int
|
||||
dim_mults: ListOrTuple(int)
|
||||
dim_mults: ListOrTuple[int]
|
||||
image_embed_dim: int = None
|
||||
text_embed_dim: int = None
|
||||
cond_on_text_encodings: bool = None
|
||||
cond_dim: int = None
|
||||
channels: int = 3
|
||||
self_attn: ListOrTuple(int)
|
||||
self_attn: ListOrTuple[int]
|
||||
attn_dim_head: int = 32
|
||||
attn_heads: int = 16
|
||||
init_cross_embed: bool = True
|
||||
@@ -237,16 +235,16 @@ class UnetConfig(BaseModel):
|
||||
extra = "allow"
|
||||
|
||||
class DecoderConfig(BaseModel):
|
||||
unets: ListOrTuple(UnetConfig)
|
||||
unets: ListOrTuple[UnetConfig]
|
||||
image_size: int = None
|
||||
image_sizes: ListOrTuple(int) = None
|
||||
image_sizes: ListOrTuple[int] = None
|
||||
clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided
|
||||
channels: int = 3
|
||||
timesteps: int = 1000
|
||||
sample_timesteps: Optional[SingularOrIterable(int)] = None
|
||||
sample_timesteps: Optional[SingularOrIterable[int]] = None
|
||||
loss_type: str = 'l2'
|
||||
beta_schedule: ListOrTuple(str) = 'cosine'
|
||||
learned_variance: bool = True
|
||||
beta_schedule: ListOrTuple[str] = None # None means all cosine
|
||||
learned_variance: SingularOrIterable[bool] = True
|
||||
image_cond_drop_prob: float = 0.1
|
||||
text_cond_drop_prob: float = 0.5
|
||||
|
||||
@@ -305,11 +303,11 @@ class DecoderDataConfig(BaseModel):
|
||||
|
||||
class DecoderTrainConfig(BaseModel):
|
||||
epochs: int = 20
|
||||
lr: SingularOrIterable(float) = 1e-4
|
||||
wd: SingularOrIterable(float) = 0.01
|
||||
warmup_steps: Optional[SingularOrIterable(int)] = None
|
||||
lr: SingularOrIterable[float] = 1e-4
|
||||
wd: SingularOrIterable[float] = 0.01
|
||||
warmup_steps: Optional[SingularOrIterable[int]] = None
|
||||
find_unused_parameters: bool = True
|
||||
max_grad_norm: SingularOrIterable(float) = 0.5
|
||||
max_grad_norm: SingularOrIterable[float] = 0.5
|
||||
save_every_n_samples: int = 100000
|
||||
n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset
|
||||
cond_scale: Union[float, List[float]] = 1.0
|
||||
@@ -320,7 +318,7 @@ class DecoderTrainConfig(BaseModel):
|
||||
use_ema: bool = True
|
||||
ema_beta: float = 0.999
|
||||
amp: bool = False
|
||||
unet_training_mask: ListOrTuple(bool) = None # If None, use all unets
|
||||
unet_training_mask: ListOrTuple[bool] = None # If None, use all unets
|
||||
|
||||
class DecoderEvaluateConfig(BaseModel):
|
||||
n_evaluation_samples: int = 1000
|
||||
|
||||
Reference in New Issue
Block a user