mirror of
https://github.com/lucidrains/DALLE2-pytorch.git
synced 2025-12-19 09:44:19 +01:00
default the device to the device that the diffusion prior parameters are on, if the trainer was never given the accelerator nor device
This commit is contained in:
@@ -173,14 +173,26 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
super().__init__()
|
||||
assert isinstance(diffusion_prior, DiffusionPrior)
|
||||
assert not exists(accelerator) or isinstance(accelerator, Accelerator)
|
||||
assert exists(accelerator) or exists(device), "You must supply some method of obtaining a device."
|
||||
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
|
||||
|
||||
# verbosity
|
||||
|
||||
self.verbose = verbose
|
||||
|
||||
# assign some helpful member vars
|
||||
|
||||
self.accelerator = accelerator
|
||||
self.device = accelerator.device if exists(accelerator) else device
|
||||
self.text_conditioned = diffusion_prior.condition_on_text_encodings
|
||||
|
||||
# setting the device
|
||||
|
||||
if not exists(accelerator) and not exists(device):
|
||||
diffusion_prior_device = next(diffusion_prior.parameters()).device
|
||||
self.print(f'accelerator not given, and device not specified: defaulting to device of diffusion prior parameters - {diffusion_prior_device}')
|
||||
self.device = diffusion_prior_device
|
||||
else:
|
||||
self.device = accelerator.device if exists(accelerator) else device
|
||||
|
||||
# save model
|
||||
|
||||
self.diffusion_prior = diffusion_prior
|
||||
@@ -214,13 +226,9 @@ class DiffusionPriorTrainer(nn.Module):
|
||||
|
||||
self.max_grad_norm = max_grad_norm
|
||||
|
||||
# verbosity
|
||||
|
||||
self.verbose = verbose
|
||||
|
||||
# track steps internally
|
||||
|
||||
self.register_buffer('step', torch.tensor([0]))
|
||||
self.register_buffer('step', torch.tensor([0], device = self.device))
|
||||
|
||||
# accelerator wrappers
|
||||
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = '0.16.10'
|
||||
__version__ = '0.16.12'
|
||||
|
||||
Reference in New Issue
Block a user