be able to customize adam eps

This commit is contained in:
Phil Wang
2022-05-14 13:55:04 -07:00
parent 591d37e266
commit e697183849
3 changed files with 10 additions and 5 deletions

View File

@@ -10,13 +10,14 @@ def get_optimizer(
lr = 2e-5,
wd = 1e-2,
betas = (0.9, 0.999),
eps = 1e-8,
filter_by_requires_grad = False
):
if filter_by_requires_grad:
params = list(filter(lambda t: t.requires_grad, params))
if wd == 0:
return Adam(params, lr = lr, betas = betas)
return Adam(params, lr = lr, betas = betas, eps = eps)
params = set(params)
wd_params, no_wd_params = separate_weight_decayable_params(params)
@@ -26,4 +27,4 @@ def get_optimizer(
{'params': list(no_wd_params), 'weight_decay': 0},
]
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas)
return AdamW(param_groups, lr = lr, weight_decay = wd, betas = betas, eps = eps)

View File

@@ -147,6 +147,7 @@ class DiffusionPriorTrainer(nn.Module):
use_ema = True,
lr = 3e-4,
wd = 1e-2,
eps = 1e-6,
max_grad_norm = None,
amp = False,
**kwargs
@@ -173,6 +174,7 @@ class DiffusionPriorTrainer(nn.Module):
diffusion_prior.parameters(),
lr = lr,
wd = wd,
eps = eps,
**kwargs
)
@@ -223,6 +225,7 @@ class DecoderTrainer(nn.Module):
use_ema = True,
lr = 2e-5,
wd = 1e-2,
eps = 1e-8,
max_grad_norm = None,
amp = False,
**kwargs
@@ -247,13 +250,14 @@ class DecoderTrainer(nn.Module):
# be able to finely customize learning rate, weight decay
# per unet
lr, wd = map(partial(cast_tuple, length = self.num_unets), (lr, wd))
lr, wd, eps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps))
for ind, (unet, unet_lr, unet_wd) in enumerate(zip(self.decoder.unets, lr, wd)):
for ind, (unet, unet_lr, unet_wd, unet_eps) in enumerate(zip(self.decoder.unets, lr, wd, eps)):
optimizer = get_optimizer(
unet.parameters(),
lr = unet_lr,
wd = unet_wd,
eps = unet_eps,
**kwargs
)